Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glob Chang Biol ; 30(9): e17449, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39301722

RESUMO

Tropical forest photosynthesis can decline at high temperatures due to (1) biochemical responses to increasing temperature and (2) stomatal responses to increasing vapor pressure deficit (VPD), which is associated with increasing temperature. It is challenging to disentangle the influence of these two mechanisms on photosynthesis in observations, because temperature and VPD are tightly correlated in tropical forests. Nonetheless, quantifying the relative strength of these two mechanisms is essential for understanding how tropical gross primary production (GPP) will respond to climate change, because increasing atmospheric CO2 concentration may partially offset VPD-driven stomatal responses, but is not expected to mitigate the effects of temperature-driven biochemical responses. We used two terrestrial biosphere models to quantify how physiological process assumptions (photosynthetic temperature acclimation and plant hydraulic stress) and functional traits (e.g., maximum xylem conductivity) influence the relative strength of modeled temperature versus VPD effects on light-saturated GPP at an Amazonian forest site, a seasonally dry tropical forest site, and an experimental tropical forest mesocosm. By simulating idealized climate change scenarios, we quantified the divergence in GPP predictions under model configurations with stronger VPD effects compared with stronger direct temperature effects. Assumptions consistent with stronger direct temperature effects resulted in larger GPP declines under warming, while assumptions consistent with stronger VPD effects resulted in more resilient GPP under warming. Our findings underscore the importance of quantifying the role of direct temperature and indirect VPD effects for projecting the resilience of tropical forests in the future, and demonstrate that the relative strength of temperature versus VPD effects in models is highly sensitive to plant functional parameters and structural assumptions about photosynthetic temperature acclimation and plant hydraulics.


Assuntos
Aclimatação , Mudança Climática , Florestas , Fotossíntese , Temperatura , Clima Tropical , Pressão de Vapor , Árvores/fisiologia , Árvores/crescimento & desenvolvimento
2.
Ecol Appl ; 34(4): e2976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685864

RESUMO

Biomass allocation in plants is the foundation for understanding dynamics in ecosystem carbon balance, species competition, and plant-environment interactions. However, existing work on plant allometry has mainly focused on trees, with fewer studies having developed allometric equations for grasses. Grasses with different life histories can vary in their carbon investment by prioritizing the growth of specific organs to survive, outcompete co-occurring plants, and ensure population persistence. Further, because grasses are important fuels for wildfire, the lack of grass allocation data adds uncertainty to process-based models that relate plant physiology to wildfire dynamics. To fill this gap, we conducted a greenhouse experiment with 11 common California grasses varying in photosynthetic pathway and growth form. We measured plant sizes and harvested above- and belowground biomass throughout the life cycle of annual species, while for the establishment stage of perennial grasses to quantify allometric relationships for leaf, stem, and root biomass, as well as plant height and canopy area. We used basal diameter as a reference measure of plant size. Overall, basal diameter is the best predictor for leaf and stem biomass, height, and canopy area. Including height as another predictor can improve model accuracy in predicting leaf and stem biomass and canopy area. Fine root biomass is a function of leaf biomass alone. Species vary in their allometric relationships, with most variation occurring for plant height, canopy area, and stem biomass. We further explored potential trade-offs in biomass allocation across species between leaf and fine root, leaf and stem, and allocation to reproduction. Consistent with our expectation, we found that fast-growing plants allocated a greater fraction to reproduction. Additionally, plant height and specific leaf area negatively influenced the leaf-to-stem ratio. However, contrary to our hypothesis, there were no differences in root-to-leaf ratio between perennial and annual or C4 and C3 plants. Our study provides species-specific and functional-type-specific allometry equations for both above- and belowground organs of 11 common California grass species, enabling nondestructive biomass assessment in California grasslands. These allometric relationships and trade-offs in carbon allocation across species can improve ecosystem model predictions of grassland species interactions and environmental responses through differences in morphology.


Assuntos
Biomassa , Poaceae , Poaceae/fisiologia , California , Clima , Modelos Biológicos
3.
New Phytol ; 238(6): 2345-2362, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960539

RESUMO

Terrestrial biosphere models (TBMs) include the representation of vertical gradients in leaf traits associated with modeling photosynthesis, respiration, and stomatal conductance. However, model assumptions associated with these gradients have not been tested in complex tropical forest canopies. We compared TBM representation of the vertical gradients of key leaf traits with measurements made in a tropical forest in Panama and then quantified the impact of the observed gradients on simulated canopy-scale CO2 and water fluxes. Comparison between observed and TBM trait gradients showed divergence that impacted canopy-scale simulations of water vapor and CO2 exchange. Notably, the ratio between the dark respiration rate and the maximum carboxylation rate was lower near the ground than at the top-of-canopy, leaf-level water-use efficiency was markedly higher at the top-of-canopy, and the decrease in maximum carboxylation rate from the top-of-canopy to the ground was less than TBM assumptions. The representation of the gradients of leaf traits in TBMs is typically derived from measurements made within-individual plants, or, for some traits, assumed constant due to a lack of experimental data. Our work shows that these assumptions are not representative of the trait gradients observed in species-rich, complex tropical forests.


Assuntos
Dióxido de Carbono , Árvores , Florestas , Fotossíntese , Folhas de Planta
4.
Glob Chang Biol ; 28(2): 509-523, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34713535

RESUMO

Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%-40% °C-1 if the effects of compromised tree defenses (15%-20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.


Assuntos
Besouros , Pinus , Animais , Secas , Pinus ponderosa , Casca de Planta , Árvores
5.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080088

RESUMO

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Assuntos
Mudança Climática , Clima Tropical , Biomassa , Demografia , Ecossistema
6.
New Phytol ; 231(5): 1798-1813, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33993520

RESUMO

Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.


Assuntos
Secas , Árvores , Florestas , Folhas de Planta , Água , Abastecimento de Água , Xilema
7.
Glob Chang Biol ; 26(10): 5734-5753, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594557

RESUMO

Elevated atmospheric carbon dioxide (eCO2 ) is predicted to increase growth rates of forest trees. The extent to which increased growth translates to changes in biomass is dependent on the turnover time of the carbon, and thus tree mortality rates. Size- or age-dependent mortality combined with increased growth rates could result in either decreased carbon turnover from a speeding up of tree life cycles, or increased biomass from trees reaching larger sizes, respectively. However, most vegetation models currently lack any representation of size- or age-dependent mortality and the effect of eCO2 on changes in biomass and carbon turnover times is thus a major source of uncertainty in predictions of future vegetation dynamics. Using a reduced-complexity form of the vegetation demographic model the Functionally Assembled Terrestrial Ecosystem Simulator to simulate an idealised tropical forest, we find increases in biomass despite reductions in carbon turnover time in both size- and age-dependent mortality scenarios in response to a hypothetical eCO2 -driven 25% increase in woody net primary productivity (wNPP). Carbon turnover times decreased by 9.6% in size-dependent mortality scenarios due to a speeding up of tree life cycles, but also by 2.0% when mortality was age-dependent, as larger crowns led to increased light competition. Increases in aboveground biomass (AGB) were much larger when mortality was age-dependent (24.3%) compared with size-dependent (13.4%) as trees reached larger sizes before death. In simulations with a constant background mortality rate, carbon turnover time decreased by 2.1% and AGB increased by 24.0%, however, absolute values of AGB and carbon turnover were higher than in either size- or age-dependent mortality scenario. The extent to which AGB increases and carbon turnover decreases will thus depend on the mechanisms of large tree mortality: if increased size itself results in elevated mortality rates, then this could reduce by about half the increase in AGB relative to the increase in wNPP.


Assuntos
Dióxido de Carbono , Ecossistema , Biomassa , Florestas , Modelos Teóricos , Árvores
8.
Global Biogeochem Cycles ; 33(10): 1289-1309, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31894175

RESUMO

Land models are often used to simulate terrestrial responses to future environmental changes, but these models are not commonly evaluated with data from experimental manipulations. Results from experimental manipulations can identify and evaluate model assumptions that are consistent with appropriate ecosystem responses to future environmental change. We conducted simulations using three coupled carbon-nitrogen versions of the Community Land Model (CLM, versions 4, 4.5, and-the newly developed-5), and compared the simulated response to nitrogen (N) and atmospheric carbon dioxide (CO2) enrichment with meta-analyses of observations from similar experimental manipulations. In control simulations, successive versions of CLM showed a poleward increase in gross primary productivity and an overall bias reduction, compared to FLUXNET-MTE observations. Simulations with N and CO2 enrichment demonstrate that CLM transitioned from a model that exhibited strong nitrogen limitation of the terrestrial carbon cycle (CLM4) to a model that showed greater responsiveness to elevated concentrations of CO2 in the atmosphere (CLM5). Overall, CLM5 simulations showed better agreement with observed ecosystem responses to experimental N and CO2 enrichment than previous versions of the model. These simulations also exposed shortcomings in structural assumptions and parameterizations. Specifically, no version of CLM captures changes in plant physiology, allocation, and nutrient uptake that are likely important aspects of terrestrial ecosystems' responses to environmental change. These highlight priority areas that should be addressed in future model developments. Moving forward, incorporating results from experimental manipulations into model benchmarking tools that are used to evaluate model performance will help increase confidence in terrestrial carbon cycle projections.

9.
Proc Natl Acad Sci U S A ; 113(36): 10019-24, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27573831

RESUMO

Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.


Assuntos
Dióxido de Carbono/toxicidade , Mudança Climática , Secas , Ecossistema , Ásia , Atmosfera/química , Europa (Continente) , Modelos Biológicos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Solo/química , América do Sul , Água/química
10.
Proc Natl Acad Sci U S A ; 113(28): 7733-8, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354511

RESUMO

With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

11.
New Phytol ; 219(3): 932-946, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29923303

RESUMO

The fate of tropical forests under climate change is unclear as a result, in part, of the uncertainty in projected changes in precipitation and in the ability of vegetation models to capture the effects of drought-induced mortality on aboveground biomass (AGB). We evaluated the ability of a terrestrial biosphere model with demography and hydrodynamics (Ecosystem Demography, ED2-hydro) to simulate AGB and mortality of four tropical tree plant functional types (PFTs) that operate along light- and water-use axes. Model predictions were compared with observations of canopy trees at Barro Colorado Island (BCI), Panama. We then assessed the implications of eight hypothetical precipitation scenarios, including increased annual precipitation, reduced inter-annual variation, El Niño-related droughts and drier wet or dry seasons, on AGB and functional diversity of the model forest. When forced with observed meteorology, ED2-hydro predictions capture multiple BCI benchmarks. ED2-hydro predicts that AGB will be sustained under lower rainfall via shifts in the functional composition of the forest, except under the drier dry-season scenario. These results support the hypothesis that inter-annual variation in mean and seasonal precipitation promotes the coexistence of functionally diverse PFTs because of the relative differences in mortality rates. If the hydroclimate becomes chronically drier or wetter, functional evenness related to drought tolerance may decline.


Assuntos
Biodiversidade , Biomassa , Florestas , Clima Tropical , Água , Colorado , Simulação por Computador , Secas , Modelos Teóricos , Chuva
12.
Glob Chang Biol ; 24(3): 1394-1404, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29055080

RESUMO

The terrestrial carbon (C) cycle has been commonly represented by a series of C balance equations to track C influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C cycle processes well but makes it difficult to track model behaviors. It is also computationally expensive, limiting the ability to conduct comprehensive parametric sensitivity analyses. To overcome these challenges, we have developed a matrix approach, which reorganizes the C balance equations in the original ESM into one matrix equation without changing any modeled C cycle processes and mechanisms. We applied the matrix approach to the Community Land Model (CLM4.5) with vertically-resolved biogeochemistry. The matrix equation exactly reproduces litter and soil organic carbon (SOC) dynamics of the standard CLM4.5 across different spatial-temporal scales. The matrix approach enables effective diagnosis of system properties such as C residence time and attribution of global change impacts to relevant processes. We illustrated, for example, the impacts of CO2 fertilization on litter and SOC dynamics can be easily decomposed into the relative contributions from C input, allocation of external C into different C pools, nitrogen regulation, altered soil environmental conditions, and vertical mixing along the soil profile. In addition, the matrix tool can accelerate model spin-up, permit thorough parametric sensitivity tests, enable pool-based data assimilation, and facilitate tracking and benchmarking of model behaviors. Overall, the matrix approach can make a broad range of future modeling activities more efficient and effective.


Assuntos
Ciclo do Carbono , Carbono/química , Modelos Teóricos , Solo/química , Nitrogênio/análise
13.
Glob Chang Biol ; 24(4): 1563-1579, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29120516

RESUMO

Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models that can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0-100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, temperature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temperature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. By providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about factors regulating the turnover of soil organic matter.


Assuntos
Ciclo do Carbono , Modelos Teóricos , Solo/química , Carbono/química , Mudança Climática , Congelamento , Processos Heterotróficos , Microbiologia do Solo , Temperatura , Fatores de Tempo , Incerteza
14.
Glob Chang Biol ; 24(1): 35-54, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28921829

RESUMO

Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.


Assuntos
Planeta Terra , Ecossistema , Modelos Biológicos , Plantas , Dinâmica Populacional , Incerteza
15.
Proc Natl Acad Sci U S A ; 112(12): 3752-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775603

RESUMO

Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

16.
Ecol Appl ; 27(5): 1421-1434, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370740

RESUMO

Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types (PFTs) is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained "residual" nitrogen pool. Based on our analysis, crops partition the largest fraction of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73%, respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple PFTs, and report substantial differences in nitrogen allocation across different PFTs. The resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.


Assuntos
Ecologia/métodos , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Modelos Biológicos
17.
Glob Chang Biol ; 21(12): 4298-302, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26182905

RESUMO

Many studies have shown that elevated atmospheric CO2 concentrations result in increased plant carbon inputs to soil that can accelerate the decomposition of native soil organic matter, an effect known as priming. Consequently, it is important to understand and quantify the priming effect for future predictions of carbon-climate feedbacks. There are potential pitfalls, however, when representing this complex system with a simple, first-order model. Here, we show that a multi-pool soil carbon model can match the change in bulk turnover time calculated from overall respiration and carbon stocks (a one-pool approach) at elevated CO2 , without a change in decomposition rate constants of individual pools (i.e., without priming). Therefore, the priming effect cannot be quantified using a one-pool model alone, and even a two-pool model may be inadequate, depending on the effect size as well as the distribution of soil organic carbon and turnover times. In addition to standard measurements of carbon stocks and CO2 fluxes, we argue that quantifying the fate of new plant inputs requires isotopic tracers and microbial measurements. Our results offer insights into modeling and interpreting priming from observations.


Assuntos
Atmosfera/química , Ciclo do Carbono , Dióxido de Carbono/química , Modelos Teóricos , Solo/química , Mudança Climática
18.
Proc Natl Acad Sci U S A ; 108(36): 14769-74, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21852573

RESUMO

Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.


Assuntos
Carbono , Clima Frio , Aquecimento Global , Modelos Teóricos
19.
Proc Natl Acad Sci U S A ; 106(22): 8835-40, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19451635

RESUMO

Remote sensing data over North America document the ubiquity of secondary aerosols resulting from a combination of primary biogenic and anthropogenic emissions. The spatial and temporal distribution of aerosol optical thickness (AOT) over the southeastern United States cannot be explained by anthropogenic aerosols alone, but is consistent with the spatial distribution, seasonal distribution, and temperature dependence of natural biogenic volatile organic compound (BVOC) emissions. These patterns, together with observations of organic aerosol in this region being dominated by modern (14)C and BVOC oxidation products with summer maxima, indicate nonfossil fuel origins and strongly suggest that the dominant summer AOT signal is caused by secondary aerosol formed from BVOC oxidation. A link between anthropogenic and biogenic emissions forming secondary aerosols that dominate the regional AOT is supported by reports of chemicals in aerosols formed by BVOC oxidation in a NO(x)- and sulfate-rich environment. Even though ground-based measurements from the IMPROVE network suggest higher sulfate than organic concentrations near the surface in this region, we infer that much of the secondary organic aerosol in the Southeast must occur above the surface layer, consistent with reported observations of the organic fraction of the total aerosol increasing with height and models of the expected vertical distribution of secondary organic aerosols from isoprene oxidation. The observed AOT is large enough in summer to provide regional cooling; thus we conclude that this secondary aerosol source is climatically relevant with significant potential for a regional negative climate feedback as BVOC emissions increase with temperature.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Carbono/química , Processos Climáticos , Temperatura Baixa , Compostos Orgânicos Voláteis/química , Monitoramento Ambiental , Estados Unidos
20.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314726

RESUMO

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Assuntos
Sequestro de Carbono , Ecossistema , Regiões Árticas , Dióxido de Carbono , Mudança Climática , Plantas , Estações do Ano , Solo , Tundra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA