Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Drug Metab Dispos ; 50(2): 114-127, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789487

RESUMO

Inactivation of Cytochrome P450 (CYP450) enzymes can lead to significant increases in exposure of comedicants. The majority of reported in vitro to in vivo extrapolation (IVIVE) data have historically focused on CYP3A, leaving the assessment of other CYP isoforms insubstantial. To this end, the utility of human hepatocytes (HHEP) and human liver microsomes (HLM) to predict clinically relevant drug-drug interactions was investigated with a focus on CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6. Evaluation of IVIVE for CYP2B6 was limited to only weak inhibition. A search of the University of Washington Drug-Drug Interaction Database was conducted to identify a clinically relevant weak, moderate, and strong inhibitor for selective substrates of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6, resulting in 18 inhibitors for in vitro characterization against 119 clinical interaction studies. Pooled human hepatocytes and HLM were preincubated with increasing concentrations of inhibitors for designated timepoints. Time dependent inhibition was detected in HLM for four moderate/strong inhibitors, suggesting that some optimization of incubation conditions (i.e., lower protein concentrations) is needed to capture weak inhibition. Clinical risk assessment was conducted by incorporating the in vitro derived kinetic parameters maximal rate of enzyme inactivation (min-1) (kinact) and concentration of inhibitor resulting in 50% of the maximum enzyme inactivation (KI) into static equations recommended by regulatory authorities. Significant overprediction was observed when applying the basic models recommended by regulatory agencies. Mechanistic static models, which consider the fraction of metabolism through the impacted enzyme, using the unbound hepatic inlet concentration lead to the best overall prediction accuracy with 92% and 85% of data from HHEPs and HLM, respectively, within twofold of the observed value. SIGNIFICANCE STATEMENT: Coupling time-dependent inactivation parameters derived from pooled human hepatocytes and human liver microsomes (HLM) with a mechanistic static model provides an easy and quantitatively accurate means to determine clinical drug-drug interaction risk from in vitro data. Optimization is needed to evaluate time-dependent inhibition (TDI) for weak and moderate inhibitors using HLM. Recommendations are made with respect to input parameters for in vitro to in vivo extrapolation (IVIVE) of TDI with non-CYP3A enzymes using available data from HLM and human hepatocytes.


Assuntos
Citocromo P-450 CYP2D6 , Microssomos Hepáticos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/metabolismo
2.
Drug Metab Dispos ; 49(9): 743-749, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34162687

RESUMO

Aldehyde oxidase (AOX) is a soluble, cytosolic enzyme that metabolizes various N-heterocyclic compounds and organic aldehydes. It has wide tissue distribution with highest levels found in liver, kidney, and lung. Human clearance projections of AOX substrates by in vitro assessments in isolated liver fractions (cytosol, S9) and even hepatocytes have been largely underpredictive of clinical outcomes. Various hypotheses have been suggested as to why this is the case. One explanation is that extrahepatic AOX expression contributes measurably to AOX clearance and is at least partially responsible for the often observed underpredictions. Although AOX expression has been confirmed in several extrahepatic tissues, activities therein and potential contribution to overall human clearance have not been thoroughly studied. In this work, the AOX enzyme activity using the S9 fractions of select extrahepatic human tissues (kidney, lung, vasculature, and intestine) were measured using carbazeran as a probe substrate. Measured activities were scaled to a whole-body clearance using best-available parameters and compared with liver S9 fractions. Here, the combined scaled AOX clearance obtained from the kidney, lung, vasculature, and intestine is very low and amounted to <1% of liver. This work suggests that AOX metabolism from extrahepatic sources plays little role in the underprediction of activity in human. One of the notable outcomes of this work has been the first direct demonstration of AOX activity in human vasculature. SIGNIFICANCE STATEMENT: This work demonstrates aldehyde oxidase (AOX) activity is measurable in a variety of extrahepatic human tissues, including vasculature, yet activities and potential contributions to human clearance are relatively low and insignificant when compared with the liver. Additionally, the modeling of the tissue-specific in vitro kinetic data suggests that AOX may be influenced by the tissue it resides in and thus show different affinity, activity, and modified activity over time.


Assuntos
Aldeído Oxidase/metabolismo , Vasos Sanguíneos/enzimologia , Intestinos/enzimologia , Rim/enzimologia , Pulmão/enzimologia , Aldeídos/metabolismo , Correlação de Dados , Ensaios Enzimáticos/métodos , Compostos Heterocíclicos/metabolismo , Humanos , Fígado/enzimologia , Taxa de Depuração Metabólica , Distribuição Tecidual/fisiologia
3.
J Pharmacokinet Pharmacodyn ; 41(2): 127-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24578187

RESUMO

Human Hexokinase IV, or glucokinase (GK), is a regulator of glucose concentrations in the body. It plays a key role in pancreatic insulin secretion as well as glucose biotransformation in the liver, making it a potentially viable target for treatment of Type 2 diabetes. Allosteric activators of GK have been shown to decrease blood glucose concentrations in both animals and humans. Here, the development of a mathematical model is presented that describes glucose modulation in an ob/ob mouse model via administration of a potent GK activator, with the goal of projecting a human efficacious dose and plasma exposure. The model accounts for the allosteric interaction between GK, the activator, and glucose using a modified Hill function. Based on model simulations using data from the ob/ob mouse and in vitro studies, human projections of glucose response to the GK activator are presented, along with dose and regimen predictions to maintain clinically significant decreases in blood glucose in a Type 2 diabetic patient. This effort serves as a basis to build a detailed mechanistic understanding of GK and its role as a therapeutic target for Type 2 diabetes, and it highlights the benefits of using such an approach in a drug discovery setting.


Assuntos
Azetidinas/farmacologia , Benzofuranos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Ativadores de Enzimas/farmacocinética , Glucoquinase/metabolismo , Hipoglicemiantes/farmacocinética , Modelos Biológicos , Animais , Azetidinas/farmacocinética , Azetidinas/uso terapêutico , Benzofuranos/farmacocinética , Benzofuranos/uso terapêutico , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativadores de Enzimas/uso terapêutico , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Camundongos Obesos
4.
J Pharm Sci ; 111(1): 247-261, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217775

RESUMO

The neuropeptide calcitonin gene-related peptide (CGRP) is known to play a central role in the underlying pathophysiology of migraine. In comparison to the effective triptan class of antimigraine treatments, the CGRP antagonists possess a comparable efficacy but a superior cardiovascular safety profile in patients. This paper describes the development of selective and potent peptidic CGRP antagonist, FE 205030, that has a fast onset of action and an optimal half-life (subcutaneous Tmax ~ 60 min, and t1/2 ~ 4.4 h in 80 kg pigs, respectively), which is key to prevention of the progression of debilitating migraine symptoms. The in vivo efficacy of this agent has been established a translational pharmacodynamic model (inhibition of capsaicin-induced increase in skin blood flow) in cynomolgus monkeys and shows maximal inhibitory activity at circulating concentrations of 30-100 nM. Antagonist activity of FE 205030 was characterized on CGRP-induced vasodilation in isolated human mesenteric resistance arteries in an ex vivo isometric myograph study, and FE 205030 effectively blocked CGRP-induced vasodilation with a pA2 of 9.3 ± 0.1, mean ± standard error. Multispecies allometric scaling and modeling of subcutaneous (SC) effective concentrations indicates that a dose of 10-30 mg/day is sufficient to achieve a drug exposure/target coverage of 8h, which is useful to prevent migraine recurrence in patients. The molecule also possesses appropriate physicochemical properties that allows for a convenient dosing form factor of 1 ml injection volume with a sufficient solubility and acceptable short-term stability, optimal for treatment of acute migraine episodes in patients. Hence, FE 205030 may provide an important fast-acting injectable option for patients suffering from frequent acute migraine episodes, complementary to preventative monoclonal antibodies and oral small molecule CGRP-R antagonist therapies.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Anticorpos Monoclonais/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Capsaicina/farmacologia , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Suínos
5.
J Med Chem ; 63(21): 12725-12747, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33054210

RESUMO

The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins, which are cleaved at specific sites by a 3C-like cysteine protease (3CLpro) in a post-translational processing step that is critical for coronavirus replication. The 3CLpro sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage. A research effort that focused on the discovery of reversible and irreversible ketone-based inhibitors of SARS CoV-1 3CLpro employing ligand-protease structures solved by X-ray crystallography led to the identification of 3 and 4. Preclinical experiments reveal 4 (PF-00835231) as a potent inhibitor of CoV-2 3CLpro with suitable pharmaceutical properties to warrant further development as an intravenous treatment for COVID-19.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Cetonas/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/metabolismo , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Humanos , Cetonas/síntese química , Cetonas/metabolismo , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Ligação Proteica , Células Vero , Tratamento Farmacológico da COVID-19
6.
Mol Cancer Ther ; 13(8): 2104-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24928852

RESUMO

Breast cancer patients with tumors lacking the three diagnostic markers (ER, PR, and HER2) are classified as triple-negative (primarily basal-like) and have poor prognosis because there is no disease-specific therapy available. To address this unmet medical need, gene expression analyses using more than a thousand breast cancer samples were conducted, which identified elevated centromere protein E (CENP-E) expression in the basal-a molecular subtype relative to other subtypes. CENP-E, a mitotic kinesin component of the spindle assembly checkpoint, is shown to be induced in basal-a tumor cell lines by the mitotic spindle inhibitor drug docetaxel. CENP-E knockdown by inducible shRNA reduces basal-a breast cancer cell viability. A potent, selective CENP-E inhibitor (PF-2771) was used to define the contribution of CENP-E motor function to basal-like breast cancer. Mechanistic evaluation of PF-2771 in basal-a tumor cells links CENP-E-dependent molecular events (e.g., phosphorylation of histone H3 Ser-10; phospho-HH3-Ser10) to functional outcomes (e.g., chromosomal congression defects). Across a diverse panel of breast cell lines, CENP-E inhibition by PF-2771 selectively inhibits proliferation of basal breast cancer cell lines relative to premalignant ones and its response correlates with the degree of chromosomal instability. Pharmacokinetic-pharmacodynamic efficacy analysis in a basal-a xenograft tumor model shows that PF-2771 exposure is well correlated with increased phospho-HH3-Ser10 levels and tumor growth regression. Complete tumor regression is observed in a patient-derived, basal-a breast cancer xenograft tumor model treated with PF-2771. Tumor regression is also observed with PF-2771 in a taxane-resistant basal-a model. Taken together, CENP-E may be an effective therapeutic target for patients with triple-negative/basal-a breast cancer.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Proteínas Cromossômicas não Histona/genética , Glicina/análogos & derivados , Neoplasia de Células Basais/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Expressão Gênica , Glicina/farmacologia , Humanos , Estimativa de Kaplan-Meier , Camundongos SCID , Neoplasia de Células Basais/tratamento farmacológico , Neoplasia de Células Basais/mortalidade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA