Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Transl Med ; 20(1): 598, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517845

RESUMO

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease that lacks known pathogenesis, distinctive diagnostic criteria, and effective treatment options. Understanding the genetic (and other) risk factors associated with the disease would begin to help to alleviate some of these issues for patients. METHODS: We applied both GWAS and the PrecisionLife combinatorial analytics platform to analyze ME/CFS cohorts from UK Biobank, including the Pain Questionnaire cohort, in a case-control design with 1000 cycles of fully random permutation. Results from this study were supported by a series of replication and cohort comparison experiments, including use of disjoint Verbal Interview CFS, post-viral fatigue syndrome and fibromyalgia cohorts also derived from UK Biobank, and compared results for overlap and reproducibility. RESULTS: Combinatorial analysis revealed 199 SNPs mapping to 14 genes that were significantly associated with 91% of the cases in the ME/CFS population. These SNPs were found to stratify by shared cases into 15 clusters (communities) made up of 84 high-order combinations of between 3 and 5 SNPs. p-values for these communities range from 2.3 × 10-10 to 1.6 × 10-72. Many of the genes identified are linked to the key cellular mechanisms hypothesized to underpin ME/CFS, including vulnerabilities to stress and/or infection, mitochondrial dysfunction, sleep disturbance and autoimmune development. We identified 3 of the critical SNPs replicated in the post-viral fatigue syndrome cohort and 2 SNPs replicated in the fibromyalgia cohort. We also noted similarities with genes associated with multiple sclerosis and long COVID, which share some symptoms and potentially a viral infection trigger with ME/CFS. CONCLUSIONS: This study provides the first detailed genetic insights into the pathophysiological mechanisms underpinning ME/CFS and offers new approaches for better diagnosis and treatment of patients.


Assuntos
Síndrome de Fadiga Crônica , Fibromialgia , Humanos , COVID-19/complicações , Síndrome de Fadiga Crônica/genética , Fibromialgia/genética , Síndrome de COVID-19 Pós-Aguda/genética , Reprodutibilidade dos Testes , Fatores de Risco
2.
Lab Invest ; 97(6): 636-648, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218741

RESUMO

A comprehensive repertoire of human microRNAs (miRNAs) that could be involved in early melanoma invasion into the dermis remains unknown. To this end, we sequenced small RNAs (18-30 nucleotides) isolated from an annotated series of invasive melanomas (average invasive depth, 2.0 mm), common melanocytic nevi, and matched normal skin (n=28). Our previously established bioinformatics pipeline identified 765 distinct mature known miRNAs and defined a set of top 40 list that clearly segregated melanomas into thin (0.75 mm) and thick (2.7 mm) groups. Among the top, miR-21-5p, let-7b-5p, let-7a-5p, miR-424-5p, miR-423-5p, miR-21-3p, miR-199b-5p, miR-182-5p, and miR-205-5p were differentially expressed between thin and thick melanomas. In a validation cohort (n=167), measured expression of miR-21-5p and miR-424-5p, not previously reported in melanoma, were significantly increased in invasive compared with in situ melanomas (P<0.0001). Increased miR-21-5p levels were significantly associated with invasive depth (P=0.038), tumor mitotic index (P=0.038), lymphovascular invasion (P=0.0036), and AJCC stage (P=0.038). In contrast, let-7b levels were significantly decreased in invasive and in situ melanomas compared with common and dysplastic nevi (P<0.0001). Decreased let-7b levels were significantly associated with invasive depth (P=0.011), Clark's level (P=0.013), ulceration (P=0.0043), and AJCC stage (P=0.011). These results define a distinct set of miRNAs associated with invasive and aggressive melanoma phenotype.


Assuntos
Melanoma/classificação , Melanoma/metabolismo , MicroRNAs/análise , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/metabolismo , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
3.
Am J Med Genet B Neuropsychiatr Genet ; 174(3): 315-323, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28190298

RESUMO

Bipolar disorder (BD) is a common, recurring psychiatric illness with unknown pathogenesis. Recent studies suggest that microRNA (miRNA) levels in brains of BD patients are significantly altered, and these changes may offer insight into BD pathology or etiology. Previously, we observed significant alterations of miR-29c levels in extracellular vesicles (EVs) extracted from prefrontal cortex (Brodmann area 9, BA9) of BD patients. In this study, we show that EVs extracted from the anterior cingulate cortex (BA24), a crucial area for modulating emotional expression and affect, have increased levels of miR-149 in BD patients compared to controls. Because miR-149 has been shown to inhibit glial proliferation, increased miR-149 expression in BA24-derived EVs is consistent with the previously reported reduced glial cell numbers in BA24 of patients diagnosed with either familial BD or familial major depressive disorder. qPCR analysis of laser-microdissected neuronal and glial cells from BA24 cortical samples of BD patients verified that the glial, but not neuronal, population exhibits significantly increased miR-149 expression. Finally, we report altered expression of both miR-149 and miR-29c in EVs extracted from brains of Flinders Sensitive Line rats, a well-validated animal model exhibiting depressive-like behaviors and glial (astrocytic) dysfunction. These findings warrant future investigations into the potential of using EV miRNA signatures as biomarkers to further enhance the biological definition of BD. © 2017 Wiley Periodicals, Inc.


Assuntos
Transtorno Bipolar/diagnóstico , Transtorno Bipolar/genética , MicroRNAs/genética , Animais , Biomarcadores/sangue , Encéfalo/patologia , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Feminino , Giro do Cíngulo/metabolismo , Humanos , Masculino , MicroRNAs/sangue , Ratos
4.
J Neuropathol Exp Neurol ; 75(8): 779-790, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27346750

RESUMO

Genome-wide association studies have established BIN1 (Bridging Integrator 1) as the most significant late-onset Alzheimer disease (AD) susceptibility locus after APOE We analyzed BIN1 protein expression using automated immunohistochemistry on the hippocampal CA1 region in 19 patients with either no, mild, or moderate-to-marked AD pathology, who had been assessed by Clinical Dementia Rating and CERAD scores. We also examined the amygdala, prefrontal, temporal, and occipital regions in a subset of these patients. In non-demented controls without AD pathology, BIN1 protein was expressed in white matter, glia, particularly oligodendrocytes, and in the neuropil in which the BIN1 signal decorated axons. With increasing severity of AD, BIN1 in the CA1 region showed: 1) sustained expression in glial cells, 2) decreased areas of neuropil expression, and 3) increased cytoplasmic neuronal expression that did not correlate with neurofibrillary tangle load. In patients with AD, both the prefrontal cortex and CA1 showed a decrease in BIN1-immunoreactive (BIN1-ir) neuropil areas and increases in numbers of BIN1-ir neurons. The numbers of CA1 BIN1-ir pyramidal neurons correlated with hippocampal CERAD neuritic plaque scores; BIN1 neuropil signal was absent in neuritic plaques. Our data provide novel insight into the relationship between BIN1 protein expression and the progression of AD-associated pathology and its diagnostic hallmarks.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Progressão da Doença , Proteínas Nucleares/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Feminino , Expressão Gênica , Humanos , Espaço Intracelular/genética , Espaço Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética
5.
JAMA Neurol ; 72(1): 15-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25365775

RESUMO

IMPORTANCE: Recent large-scale genome-wide association studies have discovered several genetic variants associated with Alzheimer disease (AD); however, the extent to which DNA methylation in these AD loci contributes to the disease susceptibility remains unknown. OBJECTIVE: To examine the association of brain DNA methylation in 28 reported AD loci with AD pathologies. DESIGN, SETTING, AND PARTICIPANTS: Ongoing community-based clinical pathological cohort studies of aging and dementia (the Religious Orders Study and the Rush Memory and Aging Project) among 740 autopsied participants 66.0 to 108.3 years old. EXPOSURES: DNA methylation levels at individual CpG sites generated from dorsolateral prefrontal cortex tissue using a bead assay. MAIN OUTCOMES AND MEASURES: Pathological diagnosis of AD by National Institute on Aging-Reagan criteria following a standard postmortem examination. RESULTS: Overall, 447 participants (60.4%) met the criteria for pathological diagnosis of AD. Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 was associated with pathological AD. The association was robustly retained after replacing the binary trait of pathological AD with 2 quantitative and molecular specific hallmarks of AD, namely, Aß load and paired helical filament tau tangle density. Furthermore, RNA expression of transcripts of SORL1 and ABCA7 was associated with paired helical filament tau tangle density, and the expression of BIN1 was associated with Aß load. CONCLUSIONS AND RELEVANCE: Brain DNA methylation in multiple AD loci is associated with AD pathologies. The results provide further evidence that disruption of DNA methylation is involved in the pathological process of AD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Antiporters/genética , Encéfalo/metabolismo , Metilação de DNA/genética , Cadeias HLA-DRB5/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Estudos de Coortes , Ilhas de CpG/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Características de Residência
6.
Nat Commun ; 6: 8726, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26644347

RESUMO

γδ T cells are a subset of lymphocytes specialized in protecting the host against pathogens and tumours. Here we describe a subset of regulatory γδ T cells that express the latency-associated peptide (LAP), a membrane-bound TGF-ß1. Thymic CD27+IFN-γ+CCR9+α4ß7+TCRγδ+ cells migrate to the periphery, particularly to Peyer's patches and small intestine lamina propria, where they upregulate LAP, downregulate IFN-γ via ATF-3 expression and acquire a regulatory phenotype. TCRγδ+LAP+ cells express antigen presentation molecules and function as antigen presenting cells that induce CD4+Foxp3+ regulatory T cells, although TCRγδ+LAP+ cells do not themselves express Foxp3. Identification of TCRγδ+LAP+ regulatory cells provides an avenue for understanding immune regulation and biologic processes linked to intestinal function and disease.


Assuntos
Colite/imunologia , Citocinas/imunologia , Mucosa Intestinal/imunologia , Nódulos Linfáticos Agregados/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/imunologia , Adulto , Animais , Animais Congênicos , Células Apresentadoras de Antígenos , Citocinas/genética , Modelos Animais de Doenças , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Técnicas In Vitro , Interferon gama , Leucócitos Mononucleares/imunologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/genética
7.
PLoS One ; 8(9): e72699, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023765

RESUMO

The full repertoire of human microRNAs (miRNAs) that could distinguish common (benign) nevi from cutaneous (malignant) melanomas remains to be established. In an effort to gain further insight into the role of miRNAs in melanoma, we applied Illumina next-generation sequencing (NGS) platform to carry out an in-depth analysis of miRNA transcriptome in biopsies of nevi, thick primary (>4.0 mm) and metastatic melanomas with matched normal skin in parallel to melanocytes and melanoma cell lines (both primary and metastatic) (n=28). From this data representing 698 known miRNAs, we defined a set of top-40 list, which properly classified normal from cancer; also confirming 23 (58%) previously discovered miRNAs while introducing an additional 17 (42%) known and top-15 putative novel candidate miRNAs deregulated during melanoma progression. Surprisingly, the miRNA signature distinguishing specimens of melanoma from nevus was significantly different than that of melanoma cell lines from melanocytes. Among the top list, miR-203, miR-204-5p, miR-205-5p, miR-211-5p, miR-23b-3p, miR-26a-5p and miR-26b-5p were decreased in melanomas vs. nevi. In a validation cohort (n=101), we verified the NGS results by qRT-PCR and showed that receiver-operating characteristic curves for miR-211-5p expression accurately discriminated invasive melanoma (AUC=0.933), melanoma in situ (AUC=0.933) and dysplastic (atypical) nevi (AUC=0.951) from common nevi. Target prediction analysis of co-transcribed miRNAs showed a cooperative regulation of key elements in the MAPK signaling pathway. Furthermore, we found extensive sequence variations (isomiRs) and other non-coding small RNAs revealing a complex melanoma transcriptome. Deep-sequencing small RNAs directly from clinically defined specimens provides a robust strategy to improve melanoma diagnostics.


Assuntos
Melanoma/genética , MicroRNAs/genética , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Técnicas In Vitro , Masculino , Melanócitos/metabolismo , Pessoa de Meia-Idade , Neoplasias Cutâneas/genética
8.
PLoS One ; 8(1): e48814, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382797

RESUMO

Exosomes are cellular secretory vesicles containing microRNAs (miRNAs). Once secreted, exosomes are able to attach to recipient cells and release miRNAs potentially modulating the function of the recipient cell. We hypothesized that exosomal miRNA expression in brains of patients diagnosed with schizophrenia (SZ) and bipolar disorder (BD) might differ from controls, reflecting either disease-specific or common aberrations in SZ and BD patients. The sources of the analyzed samples included McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center), BrainNet Europe II (BNE, a consortium of 18 brain banks across Europe) and Boston Medical Center (BMC). Exosomal miRNAs from frozen postmortem prefrontal cortices with well-preserved RNA were isolated and submitted to profiling by Luminex FLEXMAP 3D microfluidic device. Multiple statistical analyses of microarray data suggested that certain exosomal miRNAs were differentially expressed in SZ and BD subjects in comparison to controls. RT-PCR validation confirmed that two miRNAs, miR-497 in SZ samples and miR-29c in BD samples, have significantly increased expression when compared to control samples. These results warrant future studies to evaluate the potential of exosome-derived miRNAs to serve as biomarkers of SZ and BD.


Assuntos
Transtorno Bipolar/genética , MicroRNAs/genética , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Transtorno Bipolar/metabolismo , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Esquizofrenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA