Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(22): 227401, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868411

RESUMO

Voigt points represent propagation directions in anisotropic crystals along which optical modes degenerate, leading to a single circularly polarized eigenmode. They are a particular class of exceptional points. Here, we report the fabrication and characterization of a dielectric, anisotropic optical microcavity based on nonpolar ZnO that implements a non-Hermitian system and mimics the behavior of Voigt points in natural crystals. We prove the exceptional-point nature by monitoring the complex-square-root topology of the mode eigenenergies (real and imaginary parts) around the Voigt points. Polarization state analysis shows that these artificially engineered Voigt points behave as vortex cores for the linear polarization and sustain chiral modes. Our findings apply to any planar microcavity with broken cylindrical symmetry and, thus, pave the way for exploiting exceptional points in widespread optoelectronic devices such as vertical cavity surface emitting lasers and resonant cavity light emitting diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA