Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 84(10): 3083-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481254

RESUMO

Enterotoxigenic Escherichia coli (ETEC) causes ∼20% of the acute infectious diarrhea (AID) episodes worldwide, often by producing heat-stable enterotoxins (STs), which are peptides structurally homologous to paracrine hormones of the intestinal guanylate cyclase C (GUCY2C) receptor. While molecular mechanisms mediating ST-induced intestinal secretion have been defined, advancements in therapeutics have been hampered for decades by the paucity of disease models that integrate molecular and functional endpoints amenable to high-throughput screening. Here, we reveal that mouse and human intestinal enteroids in three-dimensional ex vivo cultures express the components of the GUCY2C secretory signaling axis. ST and its structural analog, linaclotide, an FDA-approved oral secretagog, induced fluid accumulation quantified simultaneously in scores of enteroid lumens, recapitulating ETEC-induced intestinal secretion. Enteroid secretion depended on canonical molecular signaling events responsible for ETEC-induced diarrhea, including cyclic GMP (cGMP) produced by GUCY2C, activation of cGMP-dependent protein kinase (PKG), and opening of the cystic fibrosis transmembrane conductance regulator (CFTR). Importantly, pharmacological inhibition of CFTR abrogated enteroid fluid secretion, providing proof of concept for the utility of this model to screen antidiarrheal agents. Intestinal enteroids offer a unique model, integrating the GUCY2C signaling axis and luminal fluid secretion, to explore the pathophysiology of, and develop platforms for, high-throughput drug screening to identify novel compounds to prevent and treat ETEC diarrheal disease.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli Enterotoxigênica/fisiologia , Enterotoxinas/fisiologia , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Análise de Variância , Animais , GMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diarreia/metabolismo , Modelos Animais de Doenças , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Infecções por Escherichia coli/fisiopatologia , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Enterotoxina , Transdução de Sinais/fisiologia
2.
Oncotarget ; 8(61): 102923-102933, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262534

RESUMO

Long-lived multipotent stem cells (ISCs) at the base of intestinal crypts adjust their phenotypes to accommodate normal maintenance and post-injury regeneration of the epithelium. Their long life, lineage plasticity, and proliferative potential underlie the necessity for tight homeostatic regulation of the ISC compartment. In that context, the guanylate cyclase C (GUCY2C) receptor and its paracrine ligands regulate intestinal epithelial homeostasis, including proliferation, lineage commitment, and DNA damage repair. However, a role for this axis in maintaining ISCs remains unknown. Transgenic mice enabling analysis of ISCs (Lgr5-GFP) in the context of GUCY2C elimination (Gucy2c-/- ) were combined with immunodetection techniques and pharmacological treatments to define the role of the GUCY2C signaling axis in supporting ISCs. ISCs were reduced in Gucy2c-/- mice, associated with loss of active Lgr5+ cells but a reciprocal increase in reserve Bmi1+ cells. GUCY2C was expressed in crypt base Lgr5+ cells in which it mediates canonical cyclic (c) GMP-dependent signaling. Endoplasmic reticulum (ER) stress, typically absent from ISCs, was elevated throughout the crypt base in Gucy2c-/- mice. The chemical chaperone tauroursodeoxycholic acid resolved this ER stress and restored the balance of ISCs, an effect mimicked by the GUCY2C effector 8Br-cGMP. Reduced ISCs in Gucy2c-/- mice was associated with greater epithelial injury and impaired regeneration following sub-lethal doses of irradiation. These observations suggest that GUCY2C provides homeostatic signals that modulate ER stress and cell vulnerability as part of the machinery contributing to the integrity of ISCs.

3.
Oncoimmunology ; 5(10): e1227897, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853651

RESUMO

Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.

4.
Expert Rev Clin Pharmacol ; 6(5): 557-64, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23971873

RESUMO

Colorectal cancer (CRC) is a major public health concern, ranking among the leading causes of cancer death in both men and women. Because of this continued burden there is a clear need for improved treatment, and more importantly prevention of this disease. In recent years there is significant evidence to support the hypothesis that guanylyl cyclase C (GCY2C) is a tumor suppressor in the intestine, and that the loss of hormone ligands for this receptor is an important step in the disease process. Thus, ligand replacement therapy has been proposed as a strategy to prevent CRC. Until recently this strategy was not clinically plausible; however, the recent regulatory approval of linaclotide (LINZESS™, Forest Laboratories and Ironwood Pharmaceuticals, Inc.), an oral GUCY2C ligand, has raised the possibility of utilizing this strategy clinically to prevent CRC.


Assuntos
Anticarcinógenos/uso terapêutico , Neoplasias Colorretais/prevenção & controle , Peptídeos/uso terapêutico , Receptores Acoplados a Guanilato Ciclase/agonistas , Receptores de Peptídeos/agonistas , Animais , Anticarcinógenos/administração & dosagem , Anticarcinógenos/farmacologia , Neoplasias Colorretais/enzimologia , Descoberta de Drogas , Humanos , Ligantes , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Receptores de Enterotoxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA