Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 147(3): 1072-91, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18467457

RESUMO

Lotus japonicus accumulates the hydroxynitrile glucosides lotaustralin, linamarin, and rhodiocyanosides A and D. Upon tissue disruption, the hydroxynitrile glucosides are bioactivated by hydrolysis by specific beta-glucosidases. A mixture of two hydroxynitrile glucoside-cleaving beta-glucosidases was isolated from L. japonicus leaves and identified by protein sequencing as LjBGD2 and LjBGD4. The isolated hydroxynitrile glucoside-cleaving beta-glucosidases preferentially hydrolyzed rhodiocyanoside A and lotaustralin, whereas linamarin was only slowly hydrolyzed, in agreement with measurements of their rate of degradation upon tissue disruption in L. japonicus leaves. Comparative homology modeling predicted that LjBGD2 and LjBGD4 had nearly identical overall topologies and substrate-binding pockets. Heterologous expression of LjBGD2 and LjBGD4 in Arabidopsis (Arabidopsis thaliana) enabled analysis of their individual substrate specificity profiles and confirmed that both LjBGD2 and LjBGD4 preferentially hydrolyze the hydroxynitrile glucosides present in L. japonicus. Phylogenetic analyses revealed a third L. japonicus putative hydroxynitrile glucoside-cleaving beta-glucosidase, LjBGD7. Reverse transcription-polymerase chain reaction analysis showed that LjBGD2 and LjBGD4 are expressed in aerial parts of young L. japonicus plants, while LjBGD7 is expressed exclusively in roots. The differential expression pattern of LjBGD2, LjBGD4, and LjBGD7 corresponds to the previously observed expression profile for CYP79D3 and CYP79D4, encoding the two cytochromes P450 that catalyze the first committed step in the biosyntheis of hydroxynitrile glucosides in L. japonicus, with CYP79D3 expression in aerial tissues and CYP79D4 expression in roots.


Assuntos
Celulases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucosídeos/metabolismo , Lotus/enzimologia , Nitrilas/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Sítios de Ligação , Celulases/genética , Hidrólise , Isoenzimas/metabolismo , Lotus/genética , Modelos Moleculares , Naftalenos/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
2.
Biochemistry ; 47(7): 2036-45, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18197705

RESUMO

The multicopper oxidases catalyze the 4e- reduction of O2 to H2O coupled to the 1e- oxidation of 4 equiv of substrate. This activity requires four Cu atoms, including T1, T2, and coupled binuclear T3 sites. The T2 and T3 sites form a trinuclear cluster (TNC) where O2 is reduced. The T1 is coupled to the TNC through a T1-Cys-His-T3 electron transfer (ET) pathway. In this study the two T3 Cu coordinating His residues which lie in this pathway in Fet3 have been mutated, H483Q, H483C, H485Q, and H485C, to study how perturbation at the TNC impacts the T1 Cu site. Spectroscopic methods, in particular resonance Raman (rR), show that the change from His to Gln to Cys increases the covalency of the T1 Cu-S Cys bond and decreases its redox potential. This study of T1-TNC interactions is then extended to Rhus vernicifera laccase where a number of well-defined species including the catalytically relevant native intermediate (NI) can be trapped for spectroscopic study. The T1 Cu-S covalency and potential do not change in these species relative to resting oxidized enzyme, but interestingly the differences in the structure of the TNC in these species do lead to changes in the T1 Cu rR spectrum. This helps to confirm that vibrations in the cysteine side chain of the T1 Cu site and the protein backbone couple to the Cu-S vibration. These changes in the side chain and backbone provide a possible mechanism for regulating intramolecular T1 to TNC ET in NI and partially reduced enzyme forms for efficient turnover.


Assuntos
Ceruloplasmina/metabolismo , Cobre/metabolismo , Lacase/metabolismo , Rhus/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Regulação Alostérica , Sítios de Ligação , Ceruloplasmina/química , Ceruloplasmina/genética , Lacase/química , Mutagênese Sítio-Dirigida , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA