Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Phylogenet Evol ; 189: 107941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804958

RESUMO

Lower Central America (LCA) has a complex biogeographic history shaped by the rise of the Isthmus of Panama and the global climatic oscillations of the Pleistocene. These events have been crucial in structuring biodiversity in LCA, but their consequences for the distribution and partitions of genetic diversity across the region remain to be elucidated. We combined complete mitochondrial genomes and nuclear ultraconserved elements (UCEs) to study the phylogeographic history and population genetic structure of the electric fish Brachyhypopomus occidentalis in LCA. Our results are consistent with the known phylogeographic history of B. occidentalis in LCA, but we update this history in several important ways that help illuminate the phylogeographic history of freshwater fishes in the region. We provide: i) support for three waves of colonization, two of which occurred prior to the final closure of the Panama Isthmus; ii) a more precise understanding of each colonization event, with evidence for a larger footprint of the first event, as well as genetic exchange across the continental divide in subsequent events; and iii) evidence for high levels of previously unrecognized population genetic structure across LCA. This updated model of colonization and diversification of B. occidentalis consists of three waves of dispersal and colonization, which triggered the evolution of geographic breaks in both nuclear and mitochondrial genomes across LCA. These processes are tightly linked to the dynamic uplift of the Isthmus, recent volcanic activity in the region, and the sea-level oscillations of the Pleistocene. These results improve previous phylogeographic inferences regarding the distribution and diversification of freshwater fishes in LCA, and generate testable hypotheses to guide future research exploring the factors shaping biodiversity in the region.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Filogenia , Filogeografia , América Central , Peixes/genética , Água Doce
2.
Artigo em Inglês | MEDLINE | ID: mdl-33751182

RESUMO

Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons, is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile A. albifrons to a stepwise decline in DO from normoxia (> 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average, A. albifrons actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that A. albifrons is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.


Assuntos
Aprendizagem da Esquiva , Comportamento Animal , Órgão Elétrico/metabolismo , Gimnotiformes/metabolismo , Oxigênio/metabolismo , Anaerobiose , Animais , Ecossistema , Água Doce/química , Natação
3.
Mol Ecol ; 29(9): 1745-1755, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32279365

RESUMO

Emerging fungal diseases have become challenges for wildlife health and conservation. North American hibernating bat species are threatened by the psychrophilic fungus Pseudogymnoascus destructans (Pd) causing the disease called white-nose syndrome (WNS) with unprecedented mortality rates. The fungus is widespread in North America and Europe, however, disease is not manifested in European bats. Differences in epidemiology and pathology indicate an evolution of resistance or tolerance mechanisms towards Pd in European bats. We compared the proteomic profile of blood plasma in healthy and Pd-colonized European Myotis myotis and North American Myotis lucifugus in order to identify pathophysiological changes associated with Pd colonization, which might also explain the differences in bat survival. Expression analyses of plasma proteins revealed differences in healthy and Pd-colonized M. lucifugus, but not in M. myotis. We identified differentially expressed proteins for acute phase response, constitutive and adaptive immunity, oxidative stress defence, metabolism and structural proteins of exosomes and desmosomes, suggesting a systemic response against Pd in North American M. lucifugus but not European M. myotis. The differences in plasma proteomic profiles between European and North American bat species colonized by Pd suggest European bats have evolved tolerance mechanisms towards Pd infection.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/sangue , Quirópteros/microbiologia , Evolução Molecular , Animais , Quirópteros/classificação , Europa (Continente) , Hibernação , América do Norte , Plasma , Proteômica
4.
J Exp Biol ; 223(Pt 3)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31937524

RESUMO

Field studies on freely behaving animals commonly require tagging and often are focused on single species. Weakly electric fish generate a species- and individual-specific electric organ discharge (EOD) and therefore provide a unique opportunity for individual tracking without tagging. Here, we present and test tracking algorithms based on recordings with submerged electrode arrays. Harmonic structures extracted from power spectra provide fish identity. Localization of fish based on weighted averages of their EOD amplitudes is found to be more robust than fitting a dipole model. We apply these techniques to monitor a community of three species, Apteronotus rostratus, Eigenmannia humboldtii and Sternopygus dariensis, in their natural habitat in Darién, Panama. We found consistent upstream movements after sunset followed by downstream movements in the second half of the night. Extrapolations of these movements and estimates of fish density obtained from additional transect data suggest that some fish cover at least several hundreds of meters of the stream per night. Most fish, including E. humboldtii, were traversing the electrode array solitarily. From in situ measurements of the decay of the EOD amplitude with distance of individual animals, we estimated that fish can detect conspecifics at distances of up to 2 m. Our recordings also emphasize the complexity of natural electrosensory scenes resulting from the interactions of the EODs of different species. Electrode arrays thus provide an unprecedented window into the so-far hidden nocturnal activities of multispecies communities of weakly electric fish at an unmatched level of detail.


Assuntos
Etologia/métodos , Gimnotiformes/fisiologia , Movimento , Algoritmos , Animais , Feminino , Masculino , Panamá , Rios , Especificidade da Espécie
5.
Artigo em Inglês | MEDLINE | ID: mdl-31648062

RESUMO

Effects of energetic limitations on the performance of sensory systems are generally difficult to quantify. Weakly electric fishes provide an ideal model system to quantify the effects of metabolic stressors on sensory information acquisition, because they use an active-sensing strategy that permits easy measurement of the sensing effort. These fishes discharge an electric signal and sense perturbations of the resulting electric field. We used the mormyrid Petrocephalus degeni to quantify the relationship between routine metabolic rate and the rate of sensory sampling (rate of electric organ discharge, EOD) while under progressive hypoxia by quantifying the critical oxygen tension (PC-MR) and the critical electric organ discharge threshold (PC-EOD). PC-MR was significantly higher in fish acclimated to normoxia for over 40 days compared to animals tested within 1-5 days of capture from a hypoxic swamp, which suggests high costs of maintaining hypoxia tolerance; however, there was no acclimation effect on PC-EOD. All P. degeni reached their PC-EOD prior to their PC-MR. However, below the respective critical tension value, EOD rate decreased more gradually than the metabolic rate suggesting that the fish were increasing the proportion of their energy budget allocated to acquiring sensory information as dissolved-oxygen levels dropped. Trade-offs between sensory sampling and other physiological functions are also suggested by the increase in routine EOD rate with long-term normoxia acclimation, in contrast to metabolic rate, which showed no significant changes. These results highlight the relationship between sensory sampling and metabolic rate in response to progressive hypoxia and the plasticity of hypoxia tolerance.


Assuntos
Adaptação Fisiológica , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Sensação/fisiologia , Animais , Modelos Biológicos , Áreas Alagadas
6.
J Fish Biol ; 96(2): 496-505, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845335

RESUMO

Environmental hypoxia has effected numerous and well-documented anatomical, physiological and behavioural adaptations in fishes. Comparatively little is known about hypoxia's impacts on sensing because it is difficult to quantify sensory acquisition in vivo. Weakly electric fishes, however, rely heavily on an easily-measurable sensory modality-active electric sensing-whereby individuals emit and detect electric organ discharges (EODs). In this study, hypoxia tolerance of a mormyrid weakly electric fish, Marcusenius victoriae, was assessed by examining both its metabolic and EOD rates using a critical threshold (pcrit ) paradigm. The routine metabolic rate was 1.42 mg O2 h-1 , and the associated critical oxygen tension was 14.34 mmHg. Routine EOD rate was 5.68 Hz with an associated critical tension of 15.14 mmHg. These metabolic indicators of hypoxia tolerance measured in this study were consistent with those in previous studies on M. victoriae and other weakly electric fishes. Furthermore, our results suggest that some aerobic processes may be reduced in favour of maintaining the EOD rate under extreme hypoxia. These findings underscore the importance of the active electrosensory modality to these hypoxia-tolerant fish.


Assuntos
Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Hipóxia/fisiopatologia , Aerobiose , Animais , Peixe Elétrico/metabolismo , Feminino , Hipóxia/metabolismo , Lagos , Masculino , Oxigênio/metabolismo , Uganda , Áreas Alagadas
7.
J Neurosci ; 38(24): 5456-5465, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29735558

RESUMO

Sensory systems evolve in the ecological niches that each species is occupying. Accordingly, encoding of natural stimuli by sensory neurons is expected to be adapted to the statistics of these stimuli. For a direct quantification of sensory scenes, we tracked natural communication behavior of male and female weakly electric fish, Apteronotus rostratus, in their Neotropical rainforest habitat with high spatiotemporal resolution over several days. In the context of courtship, we observed large quantities of electrocommunication signals. Echo responses, acknowledgment signals, and their synchronizing role in spawning demonstrated the behavioral relevance of these signals. In both courtship and aggressive contexts, we observed robust behavioral responses in stimulus regimes that have so far been neglected in electrophysiological studies of this well characterized sensory system and that are well beyond the range of known best frequency and amplitude tuning of the electroreceptor afferents' firing rate modulation. Our results emphasize the importance of quantifying sensory scenes derived from freely behaving animals in their natural habitats for understanding the function and evolution of neural systems.SIGNIFICANCE STATEMENT The processing mechanisms of sensory systems have evolved in the context of the natural lives of organisms. To understand the functioning of sensory systems therefore requires probing them in the stimulus regimes in which they evolved. We took advantage of the continuously generated electric fields of weakly electric fish to explore electrosensory stimulus statistics in their natural Neotropical habitat. Unexpectedly, many of the electrocommunication signals recorded during courtship, spawning, and aggression had much smaller amplitudes or higher frequencies than stimuli used so far in neurophysiological characterizations of the electrosensory system. Our results demonstrate that quantifying sensory scenes derived from freely behaving animals in their natural habitats is essential to avoid biases in the choice of stimuli used to probe brain function.


Assuntos
Comunicação Animal , Peixe Elétrico/fisiologia , Animais , Feminino , Masculino , Comportamento Sexual Animal/fisiologia
8.
J Exp Biol ; 221(Pt 14)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018158

RESUMO

Low dissolved oxygen (hypoxia) can severely limit fish performance, especially aerobically expensive behaviours including swimming and acquisition of sensory information. Fishes can reduce oxygen requirements by altering these behaviours under hypoxia, but the underlying mechanisms can be difficult to quantify. We used a weakly electric fish as a model system to explore potential effects of hypoxia on swim performance and sensory information acquisition, which enabled us to non-invasively record electric signalling activity used for active acquisition of sensory information during swimming. To quantify potential effects of hypoxia, we measured critical swim speed (Ucrit) and concurrent electric signalling activity under high- and low-dissolved oxygen concentrations in a hypoxia-tolerant African mormyrid fish, Marcusenius victoriae Fish were maintained under normoxia for 6 months prior to experimental treatments, and then acclimated for 8 weeks to normoxia or hypoxia and tested under both conditions (acute: 4 h exposure). Acute hypoxia exposure resulted in a significant reduction in both Ucrit and electric signalling activity in fish not acclimated to hypoxia. However, individuals acclimated to chronic hypoxia were characterized by a higher Ucrit under both hypoxia and normoxia than fish acclimated to normoxia. Following a 6 month re-introduction to normoxia, hypoxia-acclimated individuals still showed increased performance under acute hypoxic test conditions, but not under normoxia. Our results highlight the detrimental effects of hypoxia on aerobic swim performance and sensory information acquisition, and the ability of fish to heighten aerobic performance through acclimation processes that can still influence performance even months after initial exposure.


Assuntos
Peixe Elétrico/fisiologia , Oxigênio/metabolismo , Percepção/fisiologia , Sensação/fisiologia , Natação/fisiologia , Aclimatação , Anaerobiose , Animais
9.
Artigo em Inglês | MEDLINE | ID: mdl-28844972

RESUMO

Many fishes perform quick and sudden swimming maneuvers known as fast-starts to escape when threatened. In pulse-type weakly electric fishes these responses are accompanied by transient increases in the rate of electric signal production known as novelty responses. While novelty responses may increase an individual's information about their surroundings, they are aerobically powered and may come at a high energetic cost when compared to fast-starts, which rely primarily on anaerobic muscle. The juxtaposition between two key aspects of fast-starts in these fishes - the aerobic novelty response and the anaerobic swimming performance - makes them an interesting model for studying effects of hypoxia on escape performance and sensory information acquisition. We acclimated the hypoxia-tolerant African mormyrid Marcusenius victoriae to either high or low dissolved oxygen (DO) levels for 8weeks, after which fast-starts and novelty responses were quantified under both high (normoxic) and low-DO (hypoxic) test conditions. Hypoxia-acclimated fish exhibited higher maximum curvature than normoxia-acclimated fish. Displacement of normoxia-acclimated fish was not reduced under acute hypoxic test conditions. Novelty responses were given upon each startle, whether or not the fish performed a fast-start; however, novelty responses associated with fast-starts were significantly stronger than those without, suggesting a functional link between fast-start initiation and the motor control of the novelty response. Overall, hypoxia-acclimated individuals produced significantly stronger novelty responses during fast-starts. We suggest that increased novelty response strength in hypoxia-acclimated fish corresponds to an increased rate of sensory sampling, which may compensate for potential negative effects of hypoxia on higher-level processing.


Assuntos
Adaptação Fisiológica , Peixes/fisiologia , Hipóxia/fisiopatologia , Natação , Animais , Fenômenos Biomecânicos , Oxigênio/metabolismo
10.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26842566

RESUMO

Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate.


Assuntos
Encéfalo/fisiologia , Peixes-Gato/fisiologia , Proliferação de Células , Peixe Elétrico/fisiologia , Gimnotiformes/fisiologia , Comportamento Predatório , Animais , Cadeia Alimentar , Gimnotiformes/lesões , Estresse Fisiológico
11.
J Neurosci ; 33(34): 13758-72, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966697

RESUMO

The neural computations underlying sensory-guided behaviors can best be understood in view of the sensory stimuli to be processed under natural conditions. This input is often actively shaped by the movements of the animal and its sensory receptors. Little is known about natural sensory scene statistics taking into account the concomitant movement of sensory receptors in freely moving animals. South American weakly electric fish use a self-generated quasi-sinusoidal electric field for electrolocation and electrocommunication. Thousands of cutaneous electroreceptors detect changes in the transdermal potential (TDP) as the fish interact with conspecifics and the environment. Despite substantial knowledge about the circuitry and physiology of the electrosensory system, the statistical properties of the electrosensory input evoked by natural swimming movements have never been measured directly. Using underwater wireless telemetry, we recorded the TDP of Apteronotus leptorhynchus as they swam freely by themselves and during interaction with a conspecific. Swimming movements caused low-frequency TDP amplitude modulations (AMs). Interacting with a conspecific caused additional AMs around the difference frequency of their electric fields, with the amplitude of the AMs (envelope) varying at low frequencies due to mutual movements. Both AMs and envelopes showed a power-law relationship with frequency, indicating spectral scale invariance. Combining a computational model of the electric field with video tracking of movements, we show that specific swimming patterns cause characteristic spatiotemporal sensory input correlations that contain information that may be used by the brain to guide behavior.


Assuntos
Peixe Elétrico/fisiologia , Órgão Elétrico/citologia , Potenciais Evocados/fisiologia , Células Receptoras Sensoriais/fisiologia , Natação/fisiologia , Análise de Variância , Animais , Simulação por Computador , Órgão Elétrico/fisiologia , Eletricidade , Modelos Biológicos , Pele/inervação , Comportamento Social , Telemetria/instrumentação , Telemetria/métodos , Gravação em Vídeo
12.
J Exp Biol ; 216(Pt 13): 2442-50, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23761469

RESUMO

Sensory neurons continually adapt their processing properties in response to changes in the sensory environment or the brain's internal state. Neuromodulators are thought to mediate such adaptation through a variety of receptors and their action has been implicated in processes such as attention, learning and memory, aggression, reproductive behaviour and state-dependent mechanisms. Here, we review recent work on neuromodulation of electrosensory processing by acetylcholine and serotonin in the weakly electric fish Apteronotus leptorhynchus. Specifically, our review focuses on how experimental application of these neuromodulators alters excitability and responses to sensory input of pyramidal cells within the hindbrain electrosensory lateral line lobe. We then discuss current hypotheses on the functional roles of these two neuromodulatory pathways in regulating electrosensory processing at the organismal level and the need for identifying the natural behavioural conditions that activate these pathways.


Assuntos
Acetilcolina/metabolismo , Peixe Elétrico/fisiologia , Neurotransmissores/metabolismo , Serotonina/metabolismo , Animais , Peixe Elétrico/anatomia & histologia , Órgão Elétrico/anatomia & histologia , Órgão Elétrico/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Rombencéfalo/anatomia & histologia , Rombencéfalo/citologia , Rombencéfalo/fisiologia , Sensação
13.
J Exp Biol ; 216(Pt 13): 2459-68, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23761471

RESUMO

Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.


Assuntos
Órgão Elétrico/fisiologia , Gimnotiformes/fisiologia , Potenciais de Ação , Animais , Evolução Biológica , Metabolismo Energético , Sensação
14.
Horm Behav ; 61(1): 4-11, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21944946

RESUMO

Androgens are known to be involved in reproductive behaviours including courtship and aggression. According to the Challenge Hypothesis, androgen activity upregulates male reproductive behaviour seasonally and also modulates short term adaptation of these behaviours in response to social context. In the weakly electric fish, Apteronotus leptorhynchus, 11-ketotestosterone (11-KT) has been previously implicated in the regulation of electrocommunication behaviours that are believed to have roles in both aggression and courtship. Changes in male 11-KT levels were quantified using a non-invasive measurement technique alongside changes in electrocommunication behaviour following environmental cues that simulated the onset of the breeding season. Males showed an increase in mean electric organ discharge frequency (EODf), which is consistent with earlier results showing a female preference for high EODf. A subset of males with high initial EODfs showed increases in both 11-KT and EODf, which provides support for an EODf-based dominance hierarchy in this species. Males housed in social conditions and exposed to breeding conditioning also showed higher overall electric organ discharge frequencies and 11-KT compared to males housed in isolation. Evidence is presented that another type of electrocommunication signal previously implicated in courtship may also serve as an inter-male signal of submission. Our results are consistent with earlier observations that electrocommunication signals produced during inter-male aggression serve in deterring attacks, and their pattern of production further suggested the formation of a dominance hierarchy.


Assuntos
Comunicação Animal , Gimnotiformes/fisiologia , Reprodução/fisiologia , Testosterona/análogos & derivados , Animais , Órgão Elétrico/fisiologia , Feminino , Masculino , Estações do Ano , Predomínio Social , Testosterona/análise , Testosterona/fisiologia
15.
J Exp Biol ; 214(Pt 24): 4141-50, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22116756

RESUMO

Gymnotiform weakly electric fishes generate electric organ discharges (EODs) and sense perturbations of the resulting electric field for purposes of orientation, prey detection and communication. Some species produce oscillatory ('wave-type') EODs at very high frequencies (up to 2 kHz) that have been proposed to be energetically expensive. If high-frequency EODs are expensive, then fish may modulate their EOD frequency and/or amplitude in response to low-oxygen (hypoxic) stress and/or compensate for costs of signalling through other adaptations that maximize oxygen uptake efficiency. To test for evidence of an energetic cost of signalling, we recorded EOD in conjunction with metabolic rates, critical oxygen tension and aquatic surface respiration (ASR(90)) thresholds in Apteronotus leptorhynchus, a species found in high-oxygen habitats, and Eigenmannia virescens, a species more typically found in low-oxygen waters. Eigenmannia virescens had a lower mean ASR(90) threshold and critical oxygen tension compared with A. leptorhynchus, consistent with field distributions. Within each species, there was no evidence for a relationship between metabolic rate and either EOD frequency or amplitude under normoxia, suggesting that there is no significant direct metabolic cost associated with producing a higher frequency EOD. However, when exposed to progressive hypoxia, fish generally responded by reducing EOD amplitude, which may reduce energetic costs. The threshold at which fish reduced EOD amplitude tended to be lower in E. virescens, a pattern consistent with higher tolerance to hypoxic stress. The results of this study suggest that wave-type fish reduce their EOD amplitude to reduce direct energetic costs without reducing metabolic rate under hypoxia.


Assuntos
Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Animais , Metabolismo Basal , Peixe Elétrico/metabolismo , Órgão Elétrico/metabolismo , Gimnotiformes/metabolismo , Gimnotiformes/fisiologia , Oxigênio/metabolismo
16.
Biol Lett ; 7(2): 197-200, 2011 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20980295

RESUMO

Animals often use signals to communicate their dominance status and avoid the costs of combat. We investigated whether the frequency of the electric organ discharge (EOD) of the weakly electric fish, Sternarchorhynchus sp., signals the dominance status of individuals. We correlated EOD frequency with body size and found a strong positive relationship. We then performed a competition experiment in which we found that higher frequency individuals were dominant over lower frequency ones. Finally, we conducted an electrical playback experiment and found that subjects more readily approached and attacked the stimulus electrodes when they played low-frequency signals than high-frequency ones. We propose that EOD frequency communicates dominance status in this gymnotiform species.


Assuntos
Comunicação Animal , Gimnotiformes/fisiologia , Predomínio Social , Agressão , Animais , Tamanho Corporal , Gimnotiformes/anatomia & histologia , Hierarquia Social
17.
J Comp Neurol ; 529(8): 1810-1829, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33089503

RESUMO

Acetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.


Assuntos
Encéfalo/citologia , Neurônios Colinérgicos/citologia , Peixe Elétrico/anatomia & histologia , Peixe Elétrico/fisiologia , Animais , Encéfalo/fisiologia , Neurônios Colinérgicos/fisiologia
18.
Gene ; 686: 164-170, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30453071

RESUMO

Electric fishes are a diverse group of freshwater organisms with the ability to generate electric organ discharges (EODs) that are used for communication and electrolocation. This group (ca. 200 species) has originated in South America, and six species colonized the Central American Isthmus. Here, we assembled the complete mitochondrial genomes (mitogenomes) for three Central American electric fishes (i.e. Sternopygus dariensis, Brachyhypopomus occidentalis, and Apteronotus rostratus), and, based on these data, explored their phylogenetic position among Gymnotiformes. The three mitogenomes show the same gene order, as reported for other fishes, with a size ranging from 16,631 to 17,093 bp. We uncovered a novel 60 bp intergenic spacer (IGS) located between the COII and tRNALys genes, which appears to be unique to the Apteronotidae. Furthermore, phylogenetic relationships supported the traditional monophyly of Gymnotiformes, with the three species positioned within their respective family. In addition, the genus Apteronotus belongs to the early diverging lineage of the order. Finally, we found high sequence divergence (13%) between our B. occidentalis specimen and a sequence previously reported in GenBank, suggesting that the prior mitogenome of B. occidentalis represents a different South American species. Indeed, phylogenetic analyses using Cytochrome b gene across the genus placed the previously reported individual within B. bennetti. Our study provides novel mitogenome resources that will advance our understanding of the diversity and phylogenetic history of Neotropical fishes.


Assuntos
Citocromos b/genética , Peixe Elétrico/classificação , Peixe Elétrico/genética , Proteínas de Peixes/genética , Metagenoma , Filogenia , Animais
19.
Sci Rep ; 9(1): 18828, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827183

RESUMO

Spatial isolation is one of the main drivers of allopatric speciation, but the extent to which spatially-segregated populations accumulate genetic differences relevant to speciation is not always clear. We used data from ultraconserved elements (UCEs) and whole mitochondrial genomes (i.e., mitogenomes) to explore genetic variation among allopatric populations of the weakly electric fish Sternopygus dariensis across the Isthmus of Panama. We found strong genetic divergence between eastern and western populations of S. dariensis. Over 77% of the UCE loci examined were differentially fixed between populations, and these loci appear to be distributed across the species' genome. Population divergence occurred within the last 1.1 million years, perhaps due to global glaciation oscillations during the Pleistocene. Our results are consistent with a pattern of genetic differentiation under strict geographic isolation, and suggest the presence of incipient allopatric species within S. dariensis. Genetic divergence in S. dariensis likely occurred in situ, long after the closure of the Isthmus of Panama. Our study highlights the contribution of spatial isolation and vicariance to promoting rapid diversification in Neotropical freshwater fishes. The study of spatially-segregated populations within the Isthmus of Panama could reveal how genetic differences accumulate as allopatric speciation proceeds.


Assuntos
Especiação Genética , Genoma Mitocondrial , Gimnotiformes/genética , Filogenia , Animais , DNA Mitocondrial , Evolução Molecular , Análise de Sequência de DNA
20.
J Physiol Paris ; 102(4-6): 154-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18992331

RESUMO

Weakly electric fish have been one of the most successful systems in which to study the neural basis of behaviour. Currently, three avenues of research hold particular promise: the combination of field and laboratory studies to improve our understanding of natural electrosensory stimuli and their role in behaviour; the integration of research on natural electrosensory scenes and sensory processing; multidisciplinary approaches to address questions of sensory processing and motor control.


Assuntos
Comportamento Animal/fisiologia , Peixe Elétrico/fisiologia , Animais , Peixe Elétrico/anatomia & histologia , Órgão Elétrico/fisiologia , Sensação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA