RESUMO
Dynamic light scattering (DLS) and size exclusion chromatography (SEC) are among the most popular methods for determining polymer sizes in solution. Taking dendritic and network polysilanes as a group of least soluble polymer substances, we critically compare and discuss the difference between nanoparticle sizes, obtained by DLS and SEC. Polymer nanoparticles are typically in poor solution conditions below the theta point and are therefore in the globular conformation. The determination of particle sizes in the presence of attractive interactions is not a trivial task. The only possibility to measure, aggregation-free, the true molecular size of polymer nanoparticles in such a solution regime, is to perform the experiment with a dilute solution of globules (below the theta point and above the miscibility line). Based on the results of our polysilane measurements, we come to a conclusion that DLS provides more reliable results than SEC for dilute solutions of globules. General implications for the size measurements of polymer nanoparticles in solution are discussed.
RESUMO
The polysaccharide levan is a homopolymer of fructose and appears in nature as an important structural component of some bacterial biofilms. This paper reports the structural and dynamic properties of aqueous solutions of levan of various origin obtained from dynamic rheological, small-angle X-ray scattering, static and dynamic light scattering, as well as density and sound velocity measurements, determination of polymer branching after per-O-methylation, and microscopy. Besides samples of commercially available levan from Zymomonas mobilis and Erwinia herbicola, we also isolated, purified, and studied a levan sample from the biofilm of Bacillus subtilis. The results of dynamic rheological and light scattering measurements revealed very interesting viscoelastic properties of levan solutions even at very low polymer concentrations. The findings were complemented by small-angle X-ray scattering data that revealed some important differences in the structure of the aqueous levan solutions at the molecular level. Besides presenting detailed dynamic and structural results on the polysaccharide systems of various levans, one of the essential goals of this work was to point out the level of structural information that may be obtained for such polymer systems by combining basic physicochemical, rheological, and various light scattering techniques.
Assuntos
Bacillus subtilis/química , Erwinia/química , Frutanos/química , Polissacarídeos Bacterianos/química , Zymomonas/química , Biofilmes , Configuração de Carboidratos , Frutanos/isolamento & purificação , Luz , Reologia , Espalhamento de Radiação , Soluções , Água/químicaRESUMO
Prediction of analyte retention times requires prior knowledge of the column void volume, the measurement of which is still highly contested within the literature and therefore experimental based prediction is often used. In this study, we investigated deuterated acetonitrile as an isotopically labelled mobile phase component to observe its elution behaviour in a binary mixture with water at 25 different mobile phase compositions (from 5 to 95 vol.% of acetonitrile), on two stationary phases (C8 and C18), and at two temperatures (30 and 40 °C) using LC-MS. The same experimental design was additionally used for three commonly used neutral void volume markers: uracil, phloroglucinol and N,N-dimethylformamide. Temperature was observed to influence the elution of acetonitrile in an inversely proportional manner with higher temperatures coinciding with lower elution times. By utilizing a three-way ANOVA, the composition of the mobile phase has been shown to have a significant effect on deuterated acetonitrile and other investigated void volume markers, demonstrating the fact that both void volume markers and acetonitrile itself exhibit retention-like behaviour. Excess adsorption isotherms for acetonitrile were calculated using deuterated acetonitrile elution data. The comparison of void volumes, obtained with conventional neutral void volume markers, revealed the former to be 24-36% lower than the void volume obtained using deuterated acetonitrile, as an isotopically labelled mobile phase component. For a water:acetonitrile mobile phase, the minor disturbance method using deuterated acetonitrile to obtain an integral average void volume (2.08 and 2.05 mL for C18 at 30 and 40 °C, respectively and 2.16 and 2.13 mL for C8 at 30 and 40 °C, respectively) was found to be the most appropriate method for determining the elusive column void volume.
Assuntos
Água , Cromatografia Líquida/métodos , Água/química , Temperatura , Espectrometria de Massas , Indicadores e Reagentes , Acetonitrilas/química , Cromatografia Líquida de Alta PressãoRESUMO
Parchment has been in use for thousands of years and has been used as the writing or drawing support for many important historic works. A variety of analytical techniques is currently used for routine assessment of the degree of denaturation of historic parchment; however, because parchment has a heterogeneous nature, analytical methods with high spatial resolution are desirable. In this work, the use of small-angle X-ray scattering (SAXS) and synchrotron-IR (SR-IR) was examined in conjunction with multivariate data analysis to study degradation of an extended set of historic parchment samples, and particularly to investigate the effect of lipids and the presence of iron gall ink on the degradation processes. In the data analysis, shrinkage temperature, lipid content, sample age, presence of ink and accelerated degradation were included. The analysis of loading factors in partial least-squares regression and principal component analyses based on SAXS, SR-IR and other analytical and descriptive data reveals the effect of lipid removal on diffraction patterns, and lipids are found to cause the degradation process in parchment to accelerate. The effect of iron gall ink is also evident, although the mechanism of ageing is different to that of natural ageing in the absence of ink. In addition, a historic parchment score from ca. 1750 is examined, demonstrating the significant effect of iron gall ink, and lipids and inorganic soiling on its increased degradation.
Assuntos
Lipídeos/química , Manuscritos como Assunto/história , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos , Colágeno/química , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , Tinta , Ferro/química , Análise MultivariadaRESUMO
Non-destructive spectroscopic analysis combined with machine learning rapidly provides information on the identity and content of plasticizers in PVC objects of heritage value. For the first time, a large and diverse collection of more than 100 PVC objects in different degradation stages and of diverse chemical compositions was analysed by chromatographic and spectroscopic techniques to create a dataset used to construct classification and regression models. Accounting for this variety makes the model more robust and reliable for the analysis of objects in museum collections. Six different machine learning classification algorithms were compared to determine the algorithm with the highest classification accuracy of the most common plasticizers, based solely on the spectroscopic data. A classification model capable of the identification of di(2-ethylhexyl) phthalate, di(2-ethylhexyl) terephthalate, diisononyl phthalate, diisodecyl phthalate, a mixture of diisononyl phthalate and diisodecyl phthalate, and unplasticized PVC was constructed. Additionally, regression models for quantification of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) terephthalate in PVC were built. This study of real-life objects demonstrates that classification and quantification of plasticizers in a general collection of degraded PVC objects is possible, providing valuable data to collection managers.
Assuntos
Dietilexilftalato , Ácidos Ftálicos , Aprendizado de Máquina , Ácidos Ftálicos/análise , Plastificantes/química , Cloreto de Polivinila/química , Análise EspectralRESUMO
Determination of cellulose degree of polymerization (DP) is one of the most commonly used methods in paper degradation studies, performed either by a standardized method using viscometry (as average degree of polymerization (DPv)) or size-exclusion chromatography (SEC) (as weight average molecular mass (Mw)). Due to the insolubility of papers with high lignin content in cupriethylenediamine (CED), such as groundwood papers, viscometric determination is not possible; therefore, pretreatment is required to allow subsequent dissolution of the papers. In this study, the pretreatment of historical papers containing groundwood with sodium chlorite in acetic acid was investigated, which enables dissolution of the paper samples in CED and determination of the cellulose average degree of polymerization by viscometry (DPv). Kappa number was determined to estimate the lignin content in the papers. The suitability of SEC UV-VIS analysis for determination of Mw in papers with high lignin content had been verified before it was used as a comparative method for viscometry. Using SEC, changes in the weight average molecular mass (Mw) of cellulose tricarbanilate (CTC) derivative during delignification were evaluated. The results indicate that no significant depolymerization occurred in the selected samples under the studied delignification conditions, which was additionally confirmed with determination of monosaccharides by ion chromatography. The results of the Mw determinations by SEC and DPv by viscometry are in good correlation, justifying the use of viscometry after chlorite/acetic acid pretreatment to determine the cellulose average degree of polymerization in historical papers with high lignin content.
RESUMO
Wood is a natural polymeric material that is an important constituent of many heritage collections. Because of its susceptibility to biodegradation, it is often chemically treated with substances that can be harmful to human health. One of the most widely used wood preservatives was pentachlorophenol (PCP), which is still present in museum objects today, although its use has been restricted for about forty years. The development of non-destructive methods for its determination, suitable for the analysis of valuable objects, is therefore of great importance. In this work, two non-destructive solid-phase microextraction (SPME) methods were developed and optimized, using either headspace or contact mode. They were compared with a destructive solvent extraction method and found to be suitable for quantification in the range of 7.5 to 75 mg PCP/kg wood at room temperature. The developed semi-quantitative methods were applied in the wooden furniture depot of National Museum of Slovenia. PCP was detected inside two furniture objects using headspace mode. The pesticide lindane was also detected in one object. The indoor air of the depot with furniture was also sampled with HS SPME, and traces of PCP were found. According to the results, SPME methods are suitable for the detection of PCP residues in museum objects and in the environment.
RESUMO
In general, sourdough fermentation leads to an improvement in the technological, nutritional, and sensory properties of bakery products. The use of non-conventional flours with a specific autochthonous microbiota may lead to the formation of secondary metabolites, which may even have undesirable physiological and toxicological effects. Chickpea flours from different suppliers have been used to produce sourdoughs by spontaneous and inoculated fermentations. The content of nutritionally undesirable biogenic amines (BA) and beneficial gamma-aminobutyric acid (GABA) was determined by chromatography. Fenugreek sprouts, which are a rich source of amine oxidases, were used to reduce the BA content in the sourdoughs. Spontaneous fermentation resulted in a high accumulation of cadaverine, putrescine, and tyramine for certain flours. The use of commercial starter cultures was not effective in reducing the accumulation of BA in all sourdoughs. The addition of fenugreek sprouts to the suspension of sourdough with pH raised to 6.5 resulted in a significant reduction in BA contents. Enzymatic oxidation was less efficient during kneading. Baking resulted in only a partial degradation of BA and GABA in the crust and not in the crumb. Therefore, it could be suggested to give more importance to the control of sourdough fermentation with regard to the formation of nutritionally undesirable BA and to exploit the possibilities of their degradation.
RESUMO
Sprouts and microgreens are a rich source of various bioactive compounds. Seeds of lentil, fenugreek, alfalfa, and daikon radish seeds were germinated and the contents of the polyamines agmatine (AGM), putrescine (PUT), cadaverine (CAD), spermidine (SPD), and spermine (SPM) in ungerminated seeds, sprouts, and microgreens were determined. In general, sprouting led to the accumulation of the total polyamine content. The highest levels of AGM (5392 mg/kg) were found in alfalfa microgreens, PUT (1079 mg/kg) and CAD (3563 mg/kg) in fenugreek sprouts, SPD (579 mg/kg) in lentil microgreens, and SPM (922 mg/kg) in fenugreek microgreens. A large increase in CAD content was observed in all three legume sprouts. Conversely, the nutritionally beneficial polyamines AGM, SPD, and SPM were accumulated in microgreens, while their contents of CAD were significantly lower. In contrast, daikon radish sprouts exhibited a nutritionally better profile of polyamines than the microgreens. Freezing and thawing of legume sprouts resulted in significant degradation of CAD, PUT, and AGM by endogenous diamine oxidases. The enzymatic potential of fenugreek sprouts can be used to degrade exogenous PUT, CAD, and tyramine at pH values above 5.
RESUMO
We successfully transferred and applied -omics concepts to the study of material degradation, in particular historic paper. The main volatile degradation products of paper, constituting the particular "smell of old books", were determined using headspace analysis after a 24 h predegradation procedure. Using supervised and unsupervised methods of multivariate data analysis, we were able to quantitatively correlate volatile degradation products with properties important for the preservation of historic paper: rosin, lignin and carbonyl group content, degree of polymerization of cellulose, and paper acidity. On the basis of volatile degradic footprinting, we identified degradation markers for rosin and lignin in paper and investigated their effect on degradation. Apart from the known volatile paper degradation products acetic acid and furfural, we also put forward a number of other compounds of potential interest, most notably lipid peroxidation products. The nondestructive approach can be used for rapid identification of degraded historic objects on the basis of the volatile degradation products emitted by degrading paper.
RESUMO
Mycotoxins are a group of compounds produced by various fungi and excreted into the matrices on which they grow, often food intended for human consumption or animal feed. The high toxicity and carcinogenicity of these compounds and their ability to cause various pathological conditions has led to widespread screening of foods and feeds potentially polluted with them. Maximum permissible levels in different matrices have also been established for some toxins. As these are quite low, analytical methods for determination of mycotoxins have to be both sensitive and specific. In addition, an appropriate sample preparation and pre-concentration method is needed to isolate analytes from rather complicated samples. In this article, an overview of methods for analysis and sample preparation published in the last ten years is given for the most often encountered mycotoxins in different samples, mainly in food. Special emphasis is on liquid chromatography with fluorescence and mass spectrometric detection, while in the field of sample preparation various solid-phase extraction approaches are discussed. However, an overview of other analytical and sample preparation methods less often used is also given. Finally, different matrices where mycotoxins have to be determined are discussed with the emphasis on their specific characteristics important for the analysis (human food and beverages, animal feed, biological samples, environmental samples). Various issues important for accurate qualitative and quantitative analyses are critically discussed: sampling and choice of representative sample, sample preparation and possible bias associated with it, specificity of the analytical method and critical evaluation of results.
Assuntos
Micotoxinas/análise , Toxicologia/métodos , Ração Animal/análise , Ração Animal/toxicidade , Animais , Técnicas de Química Analítica , Análise de Alimentos/métodos , Humanos , Micotoxinas/toxicidadeRESUMO
There are several different approaches for LC method development; beside traditional, different software programs for method development and optimization are available. The solvatic retention model of reversed-phase LC was applied for prediction of retention in the gradient elution mode for aripiprazole and its related substances described in European Pharmacopoeia. As some of these compounds have very similar and others quite different chemical structure, their separation is challenge. Prediction was suitable on examined stationary phases (C18, C8 and phenyl-hexyl) with 0.1% phosphoric acid as aqueous mobile phase and acetonitrile or methanol as organic modifier. Predicted retention times take into account structural formulae of compounds and properties of stationary and mobile phases result in average difference of 14-17% compared to experimental ones on phenyl-hexyl stationary phase, where the highest matching was obtained. After utilisation of the retention models with data from one experimental run, the average difference decrease to maximal 7% and after contribution of data from two experimental runs, to maximal 2%. For majority of studied compounds difference between predicted and experimental values on all examined stationary phases is lower than 3%.