Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 90(7-08): 588-594, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843798

RESUMO

Antimicrobial photodynamic therapy (aPDT) is an evolving treatment strategy against human pathogenic microbes such as the Candida species, including the emerging pathogen C. auris. Using a modified EUCAST protocol, the light-enhanced antifungal activity of the natural compound parietin was explored. The photoactivity was evaluated against three separate strains of five yeasts, and its molecular mode of action was analysed via several techniques, i.e., cellular uptake, reactive electrophilic species (RES), and singlet oxygen yield. Under experimental conditions (λ = 428 nm, H = 30 J/cm2, PI = 30 min), microbial growth was inhibited by more than 90% at parietin concentrations as low as c = 0.156 mg/L (0.55 µM) for C. tropicalis and Cryptococcus neoformans, c = 0.313 mg/L (1.10 µM) for C. auris, c = 0.625 mg/L (2.20 µM) for C. glabrata, and c = 1.250 mg/L (4.40 µM) for C. albicans. Mode-of-action analysis demonstrated fungicidal activity. Parietin targets the cell membrane and induces cell death via ROS-mediated lipid peroxidation after light irradiation. In summary, parietin exhibits light-enhanced fungicidal activity against all Candida species tested (including C. auris) and Cryptococcus neoformans, covering three of the four critical threats on the WHO's most recent fungal priority list.


Assuntos
Antifúngicos , Cryptococcus neoformans , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/efeitos da radiação , Candida auris/efeitos dos fármacos , Luz , Candida/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Antraquinonas/farmacologia , Fármacos Fotossensibilizantes/farmacologia
2.
Biochem J ; 480(22): 1865-1869, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37994913

RESUMO

Plants are vital to human health and well-being, as well as helping to protect the environment against the negative impacts of climate change. They are an essential part of the 'One Health' strategy that seeks to balance and optimize the health of people, animals and the environment. Crucially, plants are central to nature-based solutions to climate mitigation, not least because soil carbon storage is an attractive strategy for mitigating greenhouse gas emissions and the associated climate change. Agriculture depends on genetically pure, high-quality seeds that are free from pests and pathogens and contain a required degree of genetic purity. This themed collection addresses key questions in the field encompassing the biochemical mechanisms that underlie plant responses and adaptations to a changing climate. This collection encompasses an analysis of the biochemistry and molecular mechanisms underpinning crop and forest resilience, together with considerations of plant adaptations to climate change-associated stresses, including drought, floods and heatwaves, and the increased threats posed by pathogens and pests.


Assuntos
Mudança Climática , Sementes , Animais , Humanos , Solo
3.
New Phytol ; 238(4): 1362-1378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710517

RESUMO

Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.


Assuntos
Líquens , Líquens/microbiologia , Simbiose , Fotossíntese
4.
BMC Genomics ; 23(1): 435, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35692040

RESUMO

BACKGROUND: Needle rust caused by the fungus Chrysomyxa rhododendri causes significant growth decline and increased mortality of young Norway spruce trees in subalpine forests. Extremely rare trees with enhanced resistance represent promising candidates for practice-oriented reproduction approaches. They also enable the investigation of tree molecular defence and resistance mechanisms against this fungal disease. Here, we combined RNA-Seq, RT-qPCR and secondary metabolite analyses during a period of 38 days following natural infection to investigate differences in constitutive and infection-induced defence between the resistant genotype PRA-R and three susceptible genotypes. RESULTS: Gene expression and secondary metabolites significantly differed among genotypes from day 7 on and revealed already known, but also novel candidate genes involved in spruce molecular defence against this pathogen. Several key genes related to (here and previously identified) spruce defence pathways to needle rust were differentially expressed in PRA-R compared to susceptible genotypes, both constitutively (in non-symptomatic needles) and infection-induced (in symptomatic needles). These genes encoded both new and well-known antifungal proteins such as endochitinases and chitinases. Specific genetic characteristics concurred with varying phenolic, terpene, and hormone needle contents in the resistant genotype, among them higher accumulation of several flavonoids (mainly kaempferol and taxifolin), stilbenes, geranyl acetone, α-ionone, abscisic acid and salicylic acid. CONCLUSIONS: Combined transcriptional and metabolic profiling of the Norway spruce defence response to infection by C. rhododendri in adult trees under subalpine conditions confirmed the results previously gained on artificially infected young clones in the greenhouse, both regarding timing and development of infection, and providing new insights into genes and metabolic pathways involved. The comparison of genotypes with different degrees of susceptibility proved that several of the identified key genes are differently regulated in PRA-R, and that the resistant genotype combines a strong constitutive defence with an induced response in infected symptomatic needles following fungal invasion. Genetic and metabolic differences between the resistant and susceptible genotypes indicated a more effective hypersensitive response (HR) in needles of PRA-R that prevents penetration and spread of the rust fungus and leads to a lower proportion of symptomatic needles as well as reduced symptom development on the few affected needles.


Assuntos
Picea , Perfilação da Expressão Gênica , Imunidade Inata , Picea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Árvores/genética , Bexiga Urinária
5.
Plant Cell Environ ; 45(9): 2708-2728, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35672914

RESUMO

Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Germinação/genética , Fenótipo , Sementes/fisiologia
6.
J Exp Bot ; 73(8): 2631-2649, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35084458

RESUMO

During desiccation, the cytoplasm of orthodox seeds solidifies into an intracellular glass with highly restricted diffusion and molecular mobility. Temperature and water content govern seed ageing rates, while oxygen (O2) can promote deteriorative reactions. However, whether the cytoplasmic physical state affects involvement of O2 in seed ageing remains unresolved. We aged Pinus densiflora seeds by controlled deterioration (CD) at 45 °C and distinct relative humidity (RH), resulting in cells with a glassy (11% and 30% RH) or fluid (60% and 80% RH) cytoplasm. Hypoxic conditions (0.4% O2) during CD delayed seed deterioration, lipid peroxidation, and decline of antioxidants (glutathione, α-tocopherol, and γ-tocopherol), but only when the cytoplasm was glassy. In contrast, when the cytoplasm was fluid, seeds deteriorated at the same rate regardless of O2 availability, while being associated with limited lipid peroxidation, detoxification of lipid peroxide products, substantial loss of glutathione, and resumption of glutathione synthesis. Changes in metabolite profiles provided evidence of other O2-independent enzymatic reactions in a fluid cytoplasm, including aldo-keto reductase and glutamate decarboxylase activities. Biochemical profiles of seeds stored under seed bank conditions resembled those obtained after CD regimes that maintained a glassy cytoplasm. Overall, O2 contributed more to seed ageing when the cytoplasm was glassy, rather than fluid.


Assuntos
Oxigênio , Pinus , Citoplasma/metabolismo , Germinação , Glutationa/metabolismo , Oxigênio/metabolismo , Pinus/metabolismo , Sementes/metabolismo
7.
New Phytol ; 231(2): 679-694, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864680

RESUMO

Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Exp Bot ; 72(5): 1576-1588, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33165603

RESUMO

Lichens can withstand extreme desiccation to water contents of ≤ 0.1 g H2O g-1 DW, and in the desiccated state are among the most extremotolerant organisms known. Desiccation-tolerant life-forms such as seeds, mosses and lichens survive 'vitrification', that is the transition of their cytoplasm to a 'glassy' state, which causes metabolism to cease. However, our understanding of the mechanisms of desiccation tolerance is hindered by poor knowledge of what reactions occur in the desiccated state. Using Flavoparmelia caperata as a model lichen, we determined at what water contents vitrification occurred upon desiccation. Molecular mobility was assessed by dynamic mechanical thermal analysis, and the de- and re-epoxidation of the xanthophyll cycle pigments (measured by HPLC) was used as a proxy to assess enzyme activity. At 20 °C vitrification occurred between 0.12-0.08 g H2O g-1 DW and enzymes were active in a 'rubbery' state (0.17 g H2O g-1 DW) but not in a glassy state (0.03 g H2O g-1 DW). Therefore, desiccated tissues may appear to be 'dry' in the conventional sense, but subtle differences in water content will have substantial consequences on the types of (bio)chemical reactions that can occur, with downstream effects on longevity in the desiccated state.


Assuntos
Briófitas , Líquens , Dessecação , Parmeliaceae , Água
9.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299036

RESUMO

Parasitic angiosperms, comprising a diverse group of flowering plants, are partially or fully dependent on their hosts to acquire water, mineral nutrients and organic compounds. Some have detrimental effects on agriculturally important crop plants. They are also intriguing model systems to study adaptive mechanisms required for the transition from an autotrophic to a heterotrophic metabolism. No less than any other plant, parasitic plants are affected by abiotic stress factors such as drought and changes in temperature, saline soils or contamination with metals or herbicides. These effects may be attributed to the direct influence of the stress, but also to diminished host availability and suitability. Although several studies on abiotic stress response of parasitic plants are available, still little is known about how abiotic factors affect host preferences, defense mechanisms of both hosts and parasites and the effects of combinations of abiotic and biotic stress experienced by the host plants. The latter effects are of specific interest as parasitic plants pose additional pressure on contemporary agriculture in times of climate change. This review summarizes the existing literature on abiotic stress response of parasitic plants, highlighting knowledge gaps and discussing perspectives for future research and potential agricultural applications.


Assuntos
Produtos Agrícolas/parasitologia , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Estresse Fisiológico , Animais , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Secas
10.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804275

RESUMO

Fumarylacetoacetate hydrolase (FAH) proteins form a superfamily found in Archaea, Bacteria, and Eukaryota. However, few fumarylacetoacetate hydrolase domain (FAHD)-containing proteins have been studied in Metazoa and their role in plants remains elusive. Sequence alignments revealed high homology between two Arabidopsis thaliana FAHD-containing proteins and human FAHD1 (hFAHD1) implicated in mitochondrial dysfunction-associated senescence. Transcripts of the closest hFAHD1 orthologue in Arabidopsis (AtFAHD1a) peak during seed maturation drying, which influences seed longevity and dormancy. Here, a homology study was conducted to assess if AtFAHD1a contributes to seed longevity and vigour. We found that an A. thaliana T-DNA insertional line (Atfahd1a-1) had extended seed longevity and shallower thermo-dormancy. Compared to the wild type, metabolite profiling of dry Atfahd1a-1 seeds showed that the concentrations of several amino acids, some reducing monosaccharides, and δ-tocopherol dropped, whereas the concentrations of dehydroascorbate, its catabolic intermediate threonic acid, and ascorbate accumulated. Furthermore, the redox state of the glutathione disulphide/glutathione couple shifted towards a more reducing state in dry mature Atfahd1a-1 seeds, suggesting that AtFAHD1a affects antioxidant redox poise during seed development. In summary, AtFAHD1a appears to be involved in seed redox regulation and to affect seed quality traits such as seed thermo-dormancy and longevity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolases/genética , Dormência de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Humanos , Longevidade/genética , Oxirredução , Sementes/genética , Sementes/crescimento & desenvolvimento
11.
Mol Plant Microbe Interact ; 33(2): 336-348, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31631769

RESUMO

In endophytes, the abundance of genes coding for enzymes processing reactive oxygen species (ROS), including hydrogen peroxide (H2O2), argues for a crucial role of ROS metabolism in plant-microbe interaction for plant colonization. Here, we studied H2O2 metabolism of bread wheat (Triticum aestivum L.) seeds and their microbiota during germination and early seedling growth, the most vulnerable stages in the plant life cycle. Treatment with hot steam diminished the seed microbiota, and these seeds produced less extracellular H2O2 than untreated seeds. Using a culture-dependent approach, Pantoea and Pseudomonas genera were the most abundant epiphytes of dry untreated seeds. Incubating intact seedlings from hot steam-treated seeds with Pantoea strains triggered H2O2 production, whereas Pseudomonas strains dampened H2O2 levels, attributable to higher catalase activities. The genus Pantoea was much less represented among seedling endophytes than genus Pseudomonas, with other endophytic genera, including Bacillus and Paenibacillus, also possessing high catalase activities. Overall, our results show that certain bacteria of the seed microbiota are able to modulate the extracellular redox environment during germination and early seedling growth, and high catalase activity is proposed as a key trait of seed endophytes.


Assuntos
Peróxido de Hidrogênio , Plântula , Sementes , Triticum/fisiologia , Germinação , Peróxido de Hidrogênio/metabolismo , Oxirredução , Plântula/microbiologia , Sementes/microbiologia
12.
BMC Genomics ; 21(1): 336, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357832

RESUMO

BACKGROUND: Norway spruce trees in subalpine forests frequently face infections by the needle rust fungus Chrysomyxa rhododendri, which causes significant growth decline and increased mortality of young trees. Yet, it is unknown whether trees actively respond to fungal attack by activating molecular defence responses and/or respective gene expression. RESULTS: Here, we report results from an infection experiment, in which the transcriptomes (via RNA-Seq analysis) and phenolic profiles (via UHPLC-MS) of control and infected trees were compared over a period of 39 days. Gene expression between infected and uninfected ramets significantly differed after 21 days of infection and revealed already known, but also novel candidate genes involved in spruce molecular defence against pathogens. CONCLUSIONS: Combined RNA-Seq and biochemical data suggest that Norway spruce response to infection by C. rhododendri is restricted locally and primarily activated between 9 and 21 days after infestation, involving a potential isolation of the fungus by a hypersensitive response (HR) associated with an activation of phenolic pathways. Identified key regulatory genes represent a solid basis for further specific analyses in spruce varieties with varying susceptibility, to better characterise resistant clones and to elucidate the resistance mechanism.


Assuntos
Basidiomycota/fisiologia , Picea/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genoma de Planta/genética , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Fenóis/química , Fenóis/metabolismo , Picea/genética , Picea/metabolismo , Doenças das Plantas/genética , RNA-Seq , Metabolismo Secundário , Transdução de Sinais , Transcriptoma
13.
J Exp Bot ; 71(11): 3314-3322, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32147713

RESUMO

In streptophytic green algae in the genus Zygnema, pre-akinete formation is considered a key survival strategy under extreme environmental conditions in alpine and polar regions. The transition from young, dividing cells to pre-akinetes is associated with morphological changes and the accumulation of storage products. Understanding the underlying metabolic changes could provide insights into survival strategies in polar habitats. Here, GC-MS-based metabolite profiling was used to study the metabolic signature associated with pre-akinete formation in Zygnema sp. from polar regions under laboratory conditions, induced by water and nutrient depletion, or collected in the field. Light microscopy and TEM revealed drastic changes in chloroplast morphology and ultrastructure, degradation of starch grains, and accumulation of lipid bodies in pre-akinetes. Accordingly, the metabolite profiles upon pre-akinete formation reflected a gradual shift in metabolic activity. Compared with young cells, pre-akinetes showed an overall reduction in primary metabolites such as amino acids and intermediates of the tricarboxylic acid (TCA) cycle, consistent with a lower metabolic turnover, while they accumulated lipids and oligosaccharides. Overall, the transition to the pre-akinete stage involves re-allocation of photosynthetically fixed energy into storage instead of growth, supporting survival of extreme environmental conditions.


Assuntos
Clorófitas , Ecossistema , Gotículas Lipídicas
14.
J Phycol ; 56(5): 1295-1307, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32452544

RESUMO

Phytohormones are pivotal signaling compounds in higher plants, in which they exert their roles intracellularly, but are also released for cell-to-cell communication. In unicellular organisms, extracellularly released phytohormones can be involved in chemical crosstalk with other organisms. However, compared to higher plants, hardly any knowledge is available on the roles of phytohormones in green algae. Here, we studied phytohormone composition and extracellular release in aero-terrestrial Trebouxiophyceae. We investigated (a) which phytohormones are produced and if they are released extracellularly, and if extracellular phytohormone levels are (b) affected by environmental stimuli, and (c) differ between lichen-forming and non-lichen-forming species. Three free-living microalgae (Apatococcus lobatus, Chloroidium ellipsoideum, and Myrmecia bisecta) and three lichen-forming microalgae (Asterochloris glomerata, Trebouxia decolorans, and Trebouxia sp.) were studied. Algae were grown on solid media and the following cellular phytohormones were identified by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS): indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), abscisic acid (ABA), gibberellin A4 (GA4 ), and zeatin (ZT). Furthermore, IAA, IBA, ABA, jasmonic acid (JA), gibberellin A3 (GA3 ), and GA4 were found to be released extracellularly. IAA and ABA were released by all six species, and IAA was the most concentrated. Phytohormone release was affected by light and water availability, especially IAA in A. glomerata, Trebouxia sp., and C. ellipsoideum. No clear patterns were observed between lichen-forming and non-lichen-forming species. The results are envisaged to contribute valuable baseline information for further studies into the roles of phytohormones in microalgae.


Assuntos
Clorófitas , Microalgas , Ácido Abscísico , Reguladores de Crescimento de Plantas , Espectrometria de Massas em Tandem
15.
Biochem J ; 476(6): 965-974, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30819782

RESUMO

High seed quality is a key trait to achieve successful crop establishment required for optimum yield and sustainable production. Seed storage conditions greatly impact two key seed quality traits; seed viability (ability to germinate and produce normal seedlings) and vigour (germination performance). Accumulated oxidative damage accompanies the loss of seed vigour and viability during ageing, indicating that redox control is key to longevity. Here, we studied the effects of controlled deterioration at 40°C and 75% relative humidity (RH) ('ageing') under two different O2 concentrations (21 and 78% O2) in Brassica oleracea Two B. oleracea genotypes with allelic differences at two QTLs that result in differences in abscisic acid (ABA) signalling and seed vigour were compared. Ageing led to a similar loss in germination speed in both genotypes that was lost faster under elevated O2 In both genotypes, an equal oxidative shift in the glutathione redox state and a minor loss of α-tocopherol progressively occurred before seed viability was lost. In contrast, ABA levels were not affected by ageing. In conclusion, both ABA signalling and seed ageing impact seed vigour but not necessarily through the same biochemical mechanisms.


Assuntos
Ácido Abscísico/metabolismo , Brassica/crescimento & desenvolvimento , Vigor Híbrido , Sementes/metabolismo , Transdução de Sinais , Brassica/genética , Oxirredução , Oxigênio/metabolismo , Consumo de Oxigênio , Sementes/genética
16.
Symbiosis ; 82(1): 95-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223597

RESUMO

Evidence is emerging that phytohormones represent key inter-kingdom signalling compounds supporting chemical communication between plants, fungi and bacteria. The roles of phytohormones for the lichen symbiosis are poorly understood, particularly in the process of lichenization, i.e. the key events which lead free-living microalgae and fungi to recognize each other, make physical contact and start developing a lichen thallus. Here, we studied cellular and extracellularly released phytohormones in three lichen mycobionts, Cladonia grayi, Xanthoria parietina and Tephromela atra, grown on solid medium, and the effects of indole-3-acetic acid (IAA) on their respective photobionts, Asterochloris glomerata, Trebouxia decolorans, Trebouxia sp. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) we found that mycobionts produced IAA, salicylic acid (SA) and jasmonic acid (JA). IAA represented the most abundant phytohormone produced and released by all mycobionts, whereas SA was released by X. parietina and T. atra, and JA was released by C. grayi only. With a half-life of 5.2 days, IAA degraded exponentially in solid BBM in dim light. When IAA was exogenously offered to the mycobionts' compatible photobionts at "physiological" concentrations (as released by their respective mycobionts and accumulated in the medium over seven days), the photobionts' water contents increased up to 4.4%. Treatment with IAA had no effects on the maximum quantum yield of photosystem II, dry mass, and the contents of photosynthetic pigments and α-tocopherol of the photobionts. The data presented may be useful for designing studies aimed at elucidating the roles of phytohormones in lichens.

18.
Environ Microbiol ; 21(11): 4283-4299, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31454446

RESUMO

Within streptophyte green algae Zygnematophyceae are the sister group to the land plants that inherited several traits conferring stress protection. Zygnema sp., a mat-forming alga thriving in extreme habitats, was collected from a field site in Svalbard, where the bottom layers are protected by the top layers. The two layers were investigated by a metatranscriptomic approach and GC-MS-based metabolite profiling. In the top layer, 6569 genes were significantly upregulated and 149 were downregulated. Upregulated genes coded for components of the photosynthetic apparatus, chlorophyll synthesis, early light-inducible proteins, cell wall and carbohydrate metabolism, including starch-degrading enzymes. An increase in maltose in the top layer and degraded starch grains at the ultrastructural levels corroborated these findings. Genes involved in amino acid, redox metabolism and DNA repair were upregulated. A total of 29 differentially accumulated metabolites (out of 173 identified ones) confirmed higher metabolic turnover in the top layer. For several of these metabolites, differential accumulation matched the transcriptional changes of enzymes involved in associated pathways. In summary, the findings support the hypothesis that in a Zygnema mat the top layer shields the bottom layers from abiotic stress factors such as excessive irradiation.


Assuntos
Clorófitas/genética , Clorófitas/metabolismo , Estreptófitas/genética , Estreptófitas/metabolismo , Regiões Árticas , Ecossistema , Metaboloma , Fotossíntese/genética , Estresse Fisiológico , Svalbard , Transcriptoma
19.
Plant Cell Environ ; 42(4): 1318-1327, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30652319

RESUMO

Barley is used for food and feed, and brewing. Nondormant seeds are required for malting, but the lack of dormancy can lead to preharvest sprouting (PHS), which is also undesired. Here, we report several new loci that modulate barley seed dormancy and PHS. Using genome-wide association mapping of 184 spring barley genotypes, we identified four new, highly significant associations on chromosomes 1H, 3H, and 5H previously not associated with barley seed dormancy or PHS. A total of 71 responsible genes were found mostly related to flowering time and hormone signalling. A homolog of the well-known Arabidopsis Delay of Germination 1 (DOG1) gene was annotated on the barley chromosome 3H. Unexpectedly, DOG1 appears to play only a minor role in barley seed dormancy. However, the gibberellin oxidase gene HvGA20ox1 contributed to dormancy alleviation, and another seven important loci changed significantly during after-ripening. Furthermore, nitric oxide release correlated negatively with dormancy and shared 27 associations. Origin and growth environment affected seed dormancy and PHS more than did agronomic traits. Days to anthesis and maturity were shorter when seeds were produced under drier conditions, seeds were less dormant, and PHS increased, with a heritability of 0.57-0.80. The results are expected to be useful for crop improvement.


Assuntos
Germinação/genética , Hordeum/genética , Óxido Nítrico/fisiologia , Dormência de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Germinação/fisiologia , Hordeum/metabolismo , Hordeum/fisiologia , Dormência de Plantas/fisiologia
20.
Biochem J ; 475(23): 3725-3743, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401685

RESUMO

Fast and uniform germination is key to agricultural production and can be achieved by seed 'priming' techniques. Here, we characterised the responses of bread wheat (Triticum aestivum L.) seeds to a hot steam treatment ('BioFlash'), which accelerated water uptake, resulting in faster germination and seedling growth, typical traits of primed seed. Before the completion of germination, metabolite profiling of seeds revealed advanced accumulation of several amino acids (especially cysteine and serine), sugars (ribose, glucose), and organic acids (glycerate, succinate) in hot steam-treated seeds, whereas sugar alcohols (e.g. arabitol, mannitol) and trehalose decreased in all seeds. Tocochromanols (the 'vitamin E family') rose independently of the hot steam treatment. We further assessed shifts in the half-cell reduction potentials of low-molecular-weight (LMW) thiol-disulfide redox couples [i.e. glutathione disulfide (GSSG)/glutathione (GSH) and cystine/cysteine], alongside the activities of the reactive oxygen species (ROS)-processing enzyme superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Upon the first 4 h of imbibition, a rapid conversion of LMW disulfides to thiols occurred. Completion of germination was associated with a re-oxidation of the LMW thiol-disulfide cellular redox environment, before more reducing conditions were re-established during seedling growth, accompanied by an increase in all ROS-processing enzyme activities. Furthermore, changes in the thiol-disulfide cellular redox state were associated to specific stages of wheat seed germination. In conclusion, the priming effect of the hot steam treatment advanced the onset of seed metabolism, including redox shifts associated with germination and seedling growth.


Assuntos
Temperatura Alta , Plântula/metabolismo , Sementes/metabolismo , Vapor , Triticum/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Germinação , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Redutase/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Sementes/crescimento & desenvolvimento , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA