Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Exp Pathol ; 100(2): 102-113, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31017330

RESUMO

A major translational barrier to the use of stem cell (SC)-based therapy in patients with myocardial infarction (MI) is the lack of a clear understanding of the mechanism(s) underlying the cardioprotective effect of SCs. Numerous paracrine factors from SCs may account for reduction in infarct size, but myocardial salvage associated with transdifferentiation of SCs into vascular cells as well as cardiomyocyte-like cells may be involved too. In this study, bone marrow-derived rat mesenchymal SC (MSCs) were microencapsulated in alginate preventing viable cell release while supporting their secretory phenotype. The hypothesis on the key role of paracrine factors from MSCs in their cardioprotective activity was tested by comparison of the effect of encapsulated vs free MSCs in the rat model of MI. Intramyocardial administration of both free and encapsulated MSCs after MI caused reduction in scar size (12.1 ± 6.83 and 14.7 ± 4.26%, respectively, vs 21.7 ± 6.88% in controls, P = 0.015 and P = 0.03 respectively). Scar size was not different in animals treated with free and encapsulated MSC (P = 0.637). These data provide evidence that MSC-derived growth factors and cytokines are crucial for cardioprotection elicited by MSC. Administration of either free or encapsulated MSCs was not arrhythmogenic in non-infarcted rats. The consistency of our data with the results of other studies on the major role of MSC secretome components in cardiac protection further support the theory that the use of live, though encapsulated, cells for MI therapy may be replaced with heart-targeted-sustained delivery of growth factors/cytokines.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/terapia , Alginatos , Animais , Arritmias Cardíacas/etiologia , Células Cultivadas , Cicatriz/patologia , Citoproteção/fisiologia , Composição de Medicamentos , Ecocardiografia , Imunofenotipagem , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/imunologia , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Comunicação Parácrina/fisiologia , Ratos Wistar , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular/fisiologia
2.
Nutrients ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36771371

RESUMO

Obesity, and its consequences for human health, is a huge and complicated problem that has no simple solution. The constant search for natural and safe compounds with systemic action that can be used for obesity prophylactics and treatment is hampered by the limited availability and variable quality of biomass of wild medicinal plants. Plant cell biotechnology is an alternative approach for the sustainable production of vegetative biomass or individual phytochemicals with high therapeutic potential. In this study, the suspension cell biomass of the medicinal plants, Dioscorea deltoidea Wall., Tribulus terrestris L., and Panax japonicus (T. Nees) C.A. Mey, produced in 20 L and 630 L bioreactors, were tested for therapeutic effects in rat models with alimentary-induced obesity. Three-month intake of water infusions of dry cell biomass (100 mg/g body weight) against the background of a hypercaloric diet reduced weight gain and the proportion of fat mass in the obese animals. In addition, cell biomass preparation reduced the intracellular dehydration and balanced the amounts of intra- and extracellular fluids in the body as determined by bioimpedance spectroscopy. A significant decrease in the glucose and cholesterol levels in the blood was also observed as a result of cell biomass administration for all species. Hypocholesterolemic activity reduced in the line P. japonicus > D. deltoidea > T. terrestris/liraglutide > intact group > control group. By the sum of parameters tested, the cell culture of D. deltoidea was considered the most effective in mitigating diet-induced obesity, with positive effects sometimes exceeding those of the reference drug liraglutide. A safety assessment of D. deltoidea cell phytopreparation showed no toxic effect on the reproductive function of the animals and their offspring. These results support the potential application of the biotechnologically produced cell biomass of medicinal plant species as safe and effective natural remedies for the treatment of obesity and related complications, particularly for the long-term treatment and during pregnancy and lactation periods when conventional treatment is often contraindicated.


Assuntos
Dioscorea , Transtornos do Metabolismo dos Lipídeos , Panax , Plantas Medicinais , Tribulus , Humanos , Feminino , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Dioscorea/química , Hipoglicemiantes/farmacologia , Tribulus/química , Biomassa , Liraglutida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Técnicas de Cultura de Células/métodos , Plantas Medicinais/química , Obesidade/tratamento farmacológico
3.
Nutrients ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836067

RESUMO

In the present study, we explored the therapeutic potential of bioreactor-grown cell cultures of the medicinal plant species Dioscorea deltoidea, Tribulus terrestris and Panax japonicus to treat carbohydrate metabolism disorders (CMDs) in laboratory rats. In the adrenaline model of hyperglycemia, aqueous suspensions of cell biomass pre-administered at a dose of 100 mg dry biomass/kg significantly reduced glucose level in animal blood 1-2.5 h (D. deltoidea and T. terrestris) or 1 h (P. japonicus) after adrenaline hydrochloride administration. In a streptozotocin-induced model of type 2 diabetes mellitus, the cell biomass of D. deltoidea and T. terrestris acted towards normalization of carbohydrate and lipid metabolism, as evidenced by a significant reduction of daily diuresis (by 39-57%), blood-glucose level (by 46-51%), blood content in urine (by 78-80%) and total cholesterol (25-36%) compared to animals without treatment. Bioactive secondary metabolites identified in the cell cultures and potentially responsible for their actions were deltoside, 25(S)-protodioscin and protodioscin in D. deltoidea; furostanol-type steroidal glycosides and quinic acid derivatives in T. terrestris; and ginsenosides and malonyl-ginsenosides in P. japonicus. These results evidenced for high potential of bioreactor-grown cell suspensions of these species for prevention and treatment of CMD, which requires further investigation.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dioscorea , Panax , Extratos Vegetais/farmacologia , Tribulus , Animais , Biomassa , Reatores Biológicos , Glicemia/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Técnicas de Cultura de Células , Colesterol/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Diurese/efeitos dos fármacos , Hematúria/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Plantas Medicinais , Ratos
4.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1649-1658, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32377771

RESUMO

The study aimed to investigate the effects of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin on chronic heart failure (HF) in normoglycemic rats. The effects of empagliflozin were compared with the standard medications for HF, e.g., angiotensin-converting enzyme (ACE) inhibitor fosinopril, beta-blocker bisoprolol, and aldosterone antagonist spironolactone. Myocardial infarction (MI) was induced in male Wistar rats via permanent ligation of the left descending coronary artery. One-month post MI, 50 animals were randomized into 5 groups (n = 10): vehicle-treated, empagliflozin (1.0 mg/kg), fosinopril (10 mg/kg), bisoprolol (10 mg/kg), and spironolactone (20 mg/kg). All medications except empagliflozin were titrated within a month and administered per os daily for 3 months. Echocardiography, 24-hour urine volume test, and treadmill exercise tests were performed at the beginning and at the end of the study. Treatment with empagliflozin slowed the progression of left ventricular dysfunction: LV sizes and ejection fraction were not changed and the minute volume was significantly increased (from 52.0 ± 15.5 to 61.2 ± 21.2 ml/min) as compared with baseline. No deaths occurred in empagliflozin group. The 24-hour urine volume tends to be higher in empagliflozin and spironolactone groups than in vehicle and fosinopril group. Moreover, empagliflozin exhibited maximal physical exercise tolerance in comparison with all investigated groups (289 ± 27 s versus 183 ± 61 s in fosinopril group, 197 ± 95 s in bisoprolol group, and 47 ± 46 s in spironolactone group, p = 0.0035 for multiple comparisons). Sodium-glucose co-transporter 2 inhibitor empagliflozin reduced progression of left ventricular dysfunction and improved tolerance of physical exercise in normoglycemic rats with HF. Empagliflozin treatment was superior with respect to physical tolerance compared with fosinopril, bisoprolol, and spironolactone.


Assuntos
Compostos Benzidrílicos/farmacologia , Fármacos Cardiovasculares/farmacologia , Tolerância ao Exercício/efeitos dos fármacos , Glucosídeos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Infarto do Miocárdio/complicações , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Bisoprolol/farmacologia , Doença Crônica , Modelos Animais de Doenças , Fosinopril/farmacologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Ratos Wistar , Espironolactona/farmacologia , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia
5.
Mol Inform ; 39(11): e2000093, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32662208

RESUMO

Chemical diversity of secondary metabolites provides a considerable variety of pharmacological actions with a significant extension due to their combinations in plant extracts. Production of plant-derived medicinal products in cell cultures has advantages because of the efficient use of different biotic and abiotic elicitors and better control of the developmental processes. Using PASS software, we predicted biological activity spectra for phytoconstituents identified in cell cultures of Panax japonicus (12 molecules), Tribulus terrestris (4 molecules), and Dioscorea deltoidea (3 molecules). Mechanisms of action associated with the antihypoxic effect were predicted for the majority of molecules. PharmaExpert software allowed analyzing possible synergistic or additive effects of the combinations of phytoconstituents associated with the antihypoxic action. Experimental studies of the antihypoxic effect of the plants' extracts in water and ethanol have been performed in 3 animal models: Acute asphyctic hypoxia (AAH), Acute haemic hypoxia (AHeH), and Acute histotoxic hypoxia (AHtH). Effects of Panax japonicus and Tribulus terrestris preparations exceeded the activity of the reference drug Mexidol in the AHtH model. In the AHeH model, all preparations demonstrated moderate activity; the most potent has been observed for Dioscorea deltoidea. Thus, we found that experimental studies in animal models have confirmed the in silico prediction.


Assuntos
Técnicas de Cultura de Células , Simulação por Computador , Dioscorea/citologia , Panax/citologia , Compostos Fitoquímicos/farmacologia , Tribulus/citologia , Animais , Biomassa , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Camundongos , Compostos Fitoquímicos/química , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA