Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 75-85, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30085373

RESUMO

RATIONALE: The most frequently occurring phthalate, di(2-ethylhexyl) phthalate (DEHP), causes adverse effects on glucose homeostasis and insulin sensitivity in several cell models and epidemiological studies. However, thus far, there is no information available on the molecular interaction of phthalates and one of the key regulators of the metabolism, the peroxisome proliferator-activated receptor gamma (PPARγ). Since the endogenous ligand of PPARγ, 15-deoxy-delta-12,14-prostaglandin J2 (15Δ-PGJ2 ), features structural similarity to DEHP and its main metabolites produced in human hepatic metabolism, mono(2-ethylhexyl) phthalate (MEHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), we tested the hypothesis of direct interactions between PPARγ and DEHP or its transformation products. METHODS: Hydrogen/deuterium exchange mass spectrometry (HDX-MS) and docking were conducted to obtain structural insights into the interactions and surface plasmon resonance (SPR) analysis to reveal information about binding levels. To confirm the activation of PPARγ upon ligand binding on the cellular level, the GeneBLAzer® bioassay was performed. RESULTS: HDX-MS and SPR analyses demonstrated that the metabolites MEHP and MEOHP, but not DEHP itself, bind to the ligand binding pocket of PPARγ. This binding leads to typical activation-associated conformational changes, as observed with its endogenous ligand 15Δ-PGJ2 . Furthermore, the reporter gene assay confirmed productive interaction. DEHP was inactive up to a concentration of 14 µM, while the metabolites MEHP and MEOHP were active at low micromolar concentrations. CONCLUSIONS: In summary, this study gives structural insights into the direct interaction of PPARγ with MEHP and MEOHP and shows that the DEHP transformation products may modulate the lipid metabolism through PPARγ pathways.


Assuntos
PPAR gama/metabolismo , Ácidos Ftálicos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Simulação de Acoplamento Molecular , PPAR gama/química , PPAR gama/farmacologia , Ácidos Ftálicos/química , Ligação Proteica
2.
Int J Mass Spectrom ; 427: 79-90, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29915518

RESUMO

In this study, a commercial uniform field drift tube ion mobility-mass spectrometer (IM-MS) was utilized to measure the gas-phase conformational populations of three well-studied proteins: ubiquitin (8566 Da), cytochrome c (12,359 Da), and myoglobin in both apo and holo forms (16,951 and 17,567 Da, respectively) in order to evaluate the use of this technology for broadscale structural proteomics applications. Proteins were electrosprayed from either acidic organic (pH ~3) or aqueous buffered (pH ~6.6) solution phase conditions, which generated a wide range of cation charge states corresponding to both extended (unfolded) and compact (folded) gas-phase conformational populations. Corresponding collision cross section (CCS) measurements were compiled for significant ion mobility peak features observed at each charge state in order to map the conformational landscapes of these proteins in both helium and nitrogen drift gases. It was observed that the conformational landscapes were similar in both drift gases, with differences being attributed primarily to ion heating during helium operation due to the necessity of operating the instrument with higher pressure differentials. Higher resolving powers were observed in nitrogen, which allowed for slightly better structural resolution of closely-spaced conformer populations. The instrumentation was found to be particularly adept at measuring low abundance conformers which are only present under gentle conditions which minimize ion heating. This work represents the single largest ion mobility CCS survey published to date for these three proteins with 266 CCS values and 117 ion mobility spectra, many of which have not been previously reported.

3.
J Mass Spectrom ; 50(2): 396-406, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25800022

RESUMO

We have synthesized a homobifunctional active ester cross-linking reagent containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) moiety connected to a benzyl group (Bz), termed TEMPO-Bz-linker. The aim for designing this novel cross-linker was to facilitate MS analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). The TEMPO-Bz-linker was reacted with all 20 proteinogenic amino acids as well as with model peptides to gain detailed insights into its fragmentation mechanism upon collision activation. The final goal of this proof-of-principle study was to evaluate the potential of the TEMPO-Bz-linker for chemical cross-linking studies to derive 3D-structure information of proteins. Our studies were motivated by the well documented instability of the central NO-C bond of TEMPO-Bz reagents upon collision activation. The fragmentation of this specific bond was investigated in respect to charge states and amino acid composition of a large set of precursor ions resulting in the identification of two distinct fragmentation pathways. Molecular ions with highly basic residues are able to keep the charge carriers located, i.e. protons or sodium cations, and consequently decompose via a homolytic cleavage of the NO-C bond of the TEMPO-Bz-linker. This leads to the formation of complementary open-shell peptide radical cations, while precursor ions that are protonated at the TEMPO-Bz-linker itself exhibit a charge-driven formation of even-electron product ions upon collision activation. MS(3) product ion experiments provided amino acid sequence information and allowed determining the cross-linking site. Our study fully characterizes the CID behavior of the TEMPO-Bz-linker and demonstrates its potential, but also its limitations for chemical cross-linking applications utilizing the special features of open-shell peptide ions on the basis of selective tandem MS analysis.


Assuntos
Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Peptídeos/análise , Peptídeos/química , Análise de Sequência de Proteína/métodos , Cromatografia Líquida de Alta Pressão , Óxidos N-Cíclicos/química , Radicais Livres , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA