Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(19): 11264-11271, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33950060

RESUMO

The excess energy emitted during the positronium (Ps) formation in condensed matter may be released as light. Spectroscopic analysis of this light can be a new method of studying the electronic properties of materials. We report the first experimental attempt, according to our knowledge, to verify the existence of this emission process. As a result, the possibility of the emission of photons during Ps formation is within the experimental uncertainty in two different solids: an n-alkane and porous silica. However, it seems that the Ps formation on the alkane surface is not accompanied by the emission of photons with energy in the detection range of 1.6-3.8 eV. Various processes that can influence the energy of the photon emitted during the Ps formation are discussed to elucidate this issue. To aid future experiments, equations were developed to estimate the expected ratio of light emission events to annihilation events with the presence or absence of a photon during the Ps formation.

2.
J Chem Phys ; 133(12): 124502, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20886945

RESUMO

Positron annihilation lifetime spectroscopy (PALS) is used to study the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [C(3)MIM][NTf(2)] in the temperature range between 150 and 320 K. The positron decay spectra are analyzed using the routine LifeTime-9.0 and the size distribution of local free volumes (subnanometer-size holes) is calculated. This distribution is in good agreement with Fürth's classical hole theory of liquids when taking into account Fürth's hole coalescence hypothesis. During cooling, the liquid sample remains in a supercooled, amorphous state and shows the glass transition in the ortho-positronium (o-Ps) lifetime at 187 K. The mean hole volume varies between 70 Å(3) at 150 K and 250 Å(3) at 265-300 K. From a comparison with the macroscopic volume, the hole density is estimated to be constant at 0.20×10(21) g(-1) corresponding to 0.30 nm(-3) at 265 K. The hole free volume fraction varies from 0.023 at 185 K to 0.073 at T(m)+12 K=265 K and can be estimated to be 0.17 at 430 K. It is shown that the viscosity follows perfectly the Cohen-Turnbull free volume theory when using the free volume determined here. The heating run clearly shows crystallization at 200 K by an abrupt decrease in the mean <τ(3)> and standard deviation σ(3) of the o-Ps lifetime distribution and an increase in the o-Ps intensity I(3). The parameters of the second lifetime component <τ(2)> and σ(2) behave parallel to the o-Ps parameters, which also shows the positron's (e(+)) response to structural changes. During melting at 253 K, all lifetime parameters recover to the initial values of the liquid. An abrupt decrease in I(3) is attributed to the solvation of e(-) and e(+) particles. Different possible interpretations of the o-Ps lifetime in the crystalline state are briefly discussed.

3.
Sci Rep ; 6: 31238, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550235

RESUMO

The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

4.
J Phys Condens Matter ; 25(3): 035801, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23221281

RESUMO

Microstructure and thermal stability of the radiation defects in n-FZ-Si ([P] ≈ 7 × 10(15) cm(-3)) single crystals have been investigated. The radiation defects have been induced by irradiation with 15 MeV protons and studied by means of both the positron lifetime spectroscopy and low-temperature measurements of the Hall effect. At each step of the isochronal annealing over the temperature range ∼60-700 °C the positron lifetime has been measured for the temperature interval ∼30-300 K, and for samples-satellites the temperature dependences of the charge carriers and mobility have been determined over the range ∼4.2-300 K. It is argued that as-grown impurity centers influence the average positron lifetime by forming shallow (E(b) ≈ 0.013 eV) positron states. The radiation-induced defects were also found to trap positrons into weakly bound (E(b) ≤ 0.01 eV) states. These positron states are observed at cryogenic temperatures during the isochronal annealing up to T(anneal.) = 340 °C. The stages of annealing in the temperature intervals ∼60-180 °C and ∼180-260 °C reflect the disappearance of E-centers and divacancies, respectively. Besides these defects the positrons were found to be localized at deep donor centers hidden in the process of annealing up to the temperature T(anneal.) ≈ 300 °C. The annealing of the deep donors occurs over the temperature range ∼300-650 °C. At these centers positrons are estimated to be bound with energies E(b) ≈ 0.096 and 0.021 eV within the temperature intervals ∼200-270 K and ∼166-66 K, respectively. The positron trapping coefficient from these defects increases from ∼1.1 × 10(16) to ∼6.5 × 10(17) s(-1) over the temperature range ∼266-66 K, thus substantiating a cascade phonon-assisted positron trapping mechanism whose efficiency is described by ≈T(-3) law. It is argued that the value of activation energy of the isochronal annealing E(a) ≈ 0.74-0.59 eV is due to dissociation of the positron traps, which is accompanied by restoration of the electrical activity of the phosphorus atoms. The data suggest that the deep donors involve a phosphorus atom and at least two vacancies. Their energy levels are at least at E > E(c) - 0.24 eV in the investigated material.


Assuntos
Condutividade Elétrica , Elétrons , Fósforo/química , Prótons , Silício/química , Doses de Radiação , Silício/efeitos da radiação , Temperatura
8.
J Chem Phys ; 126(2): 024906, 2007 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-17228972

RESUMO

The microstructure of the free volume and its temperature dependence in polymethylphenylsiloxane (PMPS) have been examined using positron annihilation lifetime spectroscopy (PALS) and pressure-volume-temperature experiments. The hole-free volume fraction h and the specific hole-free and occupied volumes, Vf=hV and Vocc=(1-h)V, were estimated employing the Simha-Somcynsky (SS) lattice-hole theory. From the PALS spectra analyzed with the new routine LT9.0 the hole size distribution, its mean, , and mean dispersion, sigmah, were calculated. A comparison of with V and Vf delivered a constant specific hole number Nh'. Using a fluctuation approach the temperature dependency of the volume of the smallest representative freely fluctuating subsystem, , is estimated to vary from approximately 8.5 nm3 at Tg to approximately 3 nm3 at T/Tg>or=1.15. Unlike other polymers, the segmental relaxation from dielectric spectroscopy of PMPS follows the Cohen-Turnbull free volume theory almost perfectly in the temperature and pressure ranges between 243 and 279 K and 0 and approximately 100 MPa. This behavior correlates with the small mass of the SS lattice mer which indicates the high flexibility of the PMPS chain. Above 293 K and approximately 150 MPa, the free volume prediction gives relaxation times that are too small, which indicates that effects of thermal energy must be included in the analysis. To quantify the degree to which volume and thermal energy govern the structural dynamics the ratio of the activation enthalpies, Ei=R[(d ln taudT1)]i (tau-relaxation time of alpha relaxation), at constant volume V and constant pressure P, EV/EP, is frequently determined. The authors present arguments for necessity to substitute EV with EVf, the activation enthalpy at constant (hole) free volume, and show that EVf/EP changes as expected: increasing with increasing free volume, i.e., with increasing temperature and decreasing pressure. EVf/EP (=0.04-0.1) exhibits remarkably smaller values than EV/EP (=0.44-0.53), which leads to the inference that the free volume plays a distinctly larger role in dynamics than traditionally concluded from EV/EP. This conclusion is in agreement with the results of our more direct Cohen-Turnbull free volume analysis.

9.
Phys Rev Lett ; 87(4): 045504, 2001 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-11461630

RESUMO

To investigate the lattice distortion caused by point defects in As-rich GaAs, we make use of a self-consistent-charge density-functional based tight-binding method. Both relevant defects, the As antisite and the As interstitial, cause significant lattice distortion. In contrast to As interstitials, isolated As antisites lead to lattice strain as well as displacement of nearest neighbor As lattice atoms into the <110> channels, in excellent agreement with experiments. Therefore, our result gives powerful evidence for As antisites being the dominating defect in as-grown As-rich GaAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA