Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Arch Virol ; 168(11): 272, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837465

RESUMO

Adenium obesum plants showing virus-like symptoms were collected in several regions of Brazil. Mottling symptoms like those observed in symptomatic plants in the field were reproduced in mechanically inoculated A. obesum plants. This potexvirus was named "desert rose mottle virus" (DRMoV), and its genome sequence was first determined by high-throughput sequencing and then confirmed by Sanger sequencing. The complete genome of DRMoV is 6,781 nt in length, excluding the poly(A) tail, and five ORFs were predicted in order from 5' to 3': Rep-TGB1-TGB2-TGB3-CP. Phylogenetic analysis based on Rep amino acid sequences showed different clustering among potexviruses. These data suggest that RDMoV is a new member of the genus Potexvirus, and the binomial name "Potexvirus adenii" is proposed for its species.


Assuntos
Potexvirus , Potexvirus/genética , Sequência de Bases , Filogenia , Sequência de Aminoácidos , Fases de Leitura Aberta , Plantas , Genoma Viral
2.
Phytopathology ; 113(8): 1595-1604, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081712

RESUMO

High-throughput sequencing of two lettuces showing virus-like symptoms in France provided evidence of infection by members of the family Secoviridae. One plant (JG1) had a complex mixed infection that involved, among others, a novel waikavirus (lettuce waikavirus 1) and two isolates of a sequivirus related to lettuce mottle virus (LeMoV). The second lettuce plant (JG2) was singly infected by LeMoV. Complete genomic sequences were obtained for all four isolates and, in addition, near complete genome sequences were obtained for other LeMoV or LeMoV-related isolates (from French cultivated and wild lettuces and from a Brazilian cultivated lettuce) and for two isolates of another family Asteraceae-infecting sequivirus, dandelion yellow mosaic virus (DaYMV). Analysis of these genomic sequences allows the proposal of tentative genome organization for the various viruses and clarification of their phylogenetic relationships. Sequence and host range comparisons point to significant differences between the two sequivirus isolates identified in the JG1 plant and LeMoV isolates from France and Brazil, suggesting they belong to a novel species for which the name lettuce star mosaic virus is proposed.

3.
Arch Virol ; 167(12): 2743-2747, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129527

RESUMO

Passiflora virus Y was detected naturally infecting soybean (Glycine max) for the first time in Brazil. Here, we report the nearly complete genome sequence and molecular and biological properties of the PaVY-Br isolate. The nearly complete genome sequence is 9679 nt long and shares 84.4% nt sequence identity with a previously reported PaVY isolate from Passiflora sp. PaVY-Br induced chlorotic spots and systemic mosaic on soybean and chlorotic local lesions on yellow passion fruit (Passiflora edulis) and sesame (Sesamum indicum). The virus was successfully transmitted by Myzus persicae, indicating that this aphid vector can contribute to the spread of PaYV from passion fruit to soybean plants. Additional epidemiological research is in progress to investigate the distribution of PaVY in soybean production areas in Brazil.


Assuntos
Passiflora , Potyvirus , Potyvirus/genética , Glycine max , Doenças das Plantas , Filogenia
4.
Phytopathology ; 111(6): 1042-1050, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33151826

RESUMO

Pepper cultivation in Israel has been constrained by two sympatric poleroviruses, Pepper vein yellows virus-2 (PeVYV-2) and Pepper whitefly-borne vein yellows virus (PeWBVYV), which are transmitted specifically by aphids and whiteflies, respectively. This study investigated the interaction between PeVYV-2 and PeWBVYV inside the host plant and the insect vectors. Our results show that PeVYV-2 and PeWBVYV compete against each other inside the host plant and also inside aphids. PeWBVYV was the weaker competitor inside the host plant, with diminished transmission rates when inoculated simultaneously or successively after PeVYV-2 and could only be transmitted efficiently when inoculated first and then challenged by PeVYV-2. Successive inoculations of plants with viruliferous whiteflies with PeWBVYV followed by viruliferous aphids with PeVYV-2 led to a coinfection rate of 60%, but with severely reduced titers of PeWBVYV in the coinfected plants compared with singly infected plants. In contrast, PeVYV-2 was the weaker competitor inside the insect vector, with reduced quantities of the acquired virus and a reduced transmission rate by aphids when given prior acquisition on PeWBVYV. However, we also show that the transmission efficiency of PeVYV-2 and PeWBVYV from coinfected plants by whiteflies and aphids remained comparable to that from singly infected plants. This is likely attributable to the reduced titers of PeWBVYV inside coinfected plants causing lesser impact on transmission of PeVYV-2 by aphids and the stronger competitiveness of PeWBVYV inside the whitefly. Competitive interactions between PeVYV-2 and PeWBVYV inside the host plant and insect vector can thus be beneficial for their coexistence.


Assuntos
Afídeos , Capsicum , Hemípteros/virologia , Luteoviridae , Animais , Afídeos/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia
5.
Arch Virol ; 165(10): 2349-2353, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32743696

RESUMO

The complete nucleotide sequence of a new member of the family Potyviridae, which we propose to name "Arachis virus Y" (ArVY), is reported from forage peanut plants (Arachis pintoi) exhibiting virus-like symptoms. The ArVY positive-sense RNA genome is 9,213 nucleotides long and encodes a polyprotein with 2,947 amino acids that is predicted to be cleaved into 10 mature proteins. The complete single open reading frame (ORF) of ArVY shares 47% and 34% nucleotide and amino acid sequence identity, respectively, with the closest related virus, soybean yellow shoot virus. Electron microscopic analysis revealed elongated viral particles typical of those found in plant cells infected with potyviruses.


Assuntos
Arachis/virologia , Genoma Viral , Filogenia , Potyviridae/genética , RNA Viral/genética , Proteínas Virais/genética , Brasil , Fases de Leitura Aberta , Doenças das Plantas/virologia , Folhas de Planta/virologia , Potyviridae/classificação , Potyviridae/isolamento & purificação , Potyviridae/ultraestrutura , Vírion/genética , Vírion/isolamento & purificação , Vírion/ultraestrutura
6.
Bull Entomol Res ; 110(4): 487-496, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31987066

RESUMO

The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most important agricultural pests and virus vectors worldwide. Bemisia tabaci is considered a complex of cryptic species with at least 44 species. Among them, the species Middle East-Asia Minor 1 (MEAM1, formerly B biotype) and Mediterranean (MED, formerly Q biotype) are the most important, and they have attained global status. In Brazil, MEAM1 was first reported in the 1990s and is currently the predominant species in the country, meanwhile, MED was recently reported in the South and Southeast regions and was found to be mainly associated with ornamental plants. Currently, an increasing problem in the management of whitefly infestations in greenhouses associated with bell pepper was observed in São Paulo State, Brazil. The whiteflies were collected and identified based on a microsatellite locus (primer pair BEM23F and BEM23R) and the mitochondrial cytochrome oxidase I gene followed by restriction fragment length polymorphism analysis and sequencing. We observed that MED was the predominant species collected on bell pepper, but it was also found on tomato, cucumber, eggplant, and weeds grown in greenhouses. In open field, we found MED on tomatoes, bell peppers, and eggplants. In addition, MED was identified in Goiás State in association with ornamental plants. The begomovirus Tomato severe rugose virus and the crinivirus Tomato chlorosis virus was detected on bell pepper and tomato, respectively. Only MED specimens were found associated with the virus-infected plants. Moreover, we also investigated the endosymbionts present in the MED whiteflies. The collected populations of B. tabaci MED harbored a diversity of secondary endosymbionts, with Hamiltonella (H) found predominantly in 89 specimens of the 129 tested. These results represent a new concern for Brazilian agriculture, especially for the management of the newly introduced whitefly MED species, which must be implemented to limit the spreading and establishment of this pest in different crops in this country.


Assuntos
Produtos Agrícolas , Hemípteros/classificação , Hemípteros/virologia , Animais , Begomovirus/isolamento & purificação , Brasil , Crinivirus/isolamento & purificação , Surtos de Doenças , Hemípteros/genética , Espécies Introduzidas , Repetições de Microssatélites , Doenças das Plantas/virologia , Simbiose , Verduras
7.
Mol Ecol ; 27(21): 4241-4256, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30222226

RESUMO

Insect-plant associations and their role in diversification are mostly studied in specialists. Here, we aimed to identify macroevolution patterns in the relationships between generalists and their host plants that have the potential to promote diversification. We focused on the Bemisia tabaci species complex containing more than 35 cryptic species. Mechanisms for explaining this impressive diversification have focused so far on allopatric forces that assume a common, broad, host range. We conducted a literature survey which indicated that species in the complex differ in their host range, with only few showing a truly broad one. We then selected six species, representing different phylogenetic groups and documented host ranges. We tested whether differences in the species expression profiles of detoxification genes are shaped more by their phylogenetic relationships or by their ability to successfully utilize multiple hosts, including novel ones. Performance assays divided the six species into two groups of three, one showing higher performance on various hosts than the other (the lower performance group). The same grouping pattern appeared when the species were clustered according to their expression profiles. Only species placed in the lower performance group showed a tendency to lower the expression of multiple genes. Taken together, these findings bring evidence for the existence of a common detoxification "machinery," shared between species that can perform well on multiple hosts. We raise the possibility that this "machinery" might have played a passive role in the diversification of the complex, by allowing successful migration to new/novel environments, leading, in some cases, to fragmentation and speciation.


Assuntos
Hemípteros/genética , Herbivoria , Inativação Metabólica/genética , Plantas , Animais , Hemípteros/classificação , Filogenia , Análise de Sequência de RNA
8.
Plant Cell Rep ; 35(1): 65-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26408145

RESUMO

KEY MESSAGE: The role of the tomato receptor-like kinase SlSOBIR1 in antiviral defense was investigated. SlSOBIR1 was transcriptionally modulated by unrelated viruses but its ectopic expression had no effect on virus accumulation. Leucine-rich repeat receptor-like kinases (LRR-RLK) constitute a diverse group of proteins allowing the cell to recognize and respond to the extracellular environment. In the present study we focused on a gene encoding a tomato LRR-RLK (named SlSOBIR1) involved in the host defense against fungal pathogens. Curiously, SlSOBIR1 has been previously reported to be down-regulated by Pepper yellow mosaic virus (PepYMV) infection. Here, we show that SlSOBIR1 is responsive to wounding and differentially modulated by unrelated virus infection, i.e., down-regulated by PepYMV and up-regulated by Tomato chlorotic spot virus (TCSV). Despite these divergent expression profiles, SlSOBIR1 overexpression in transgenic tobacco plants had no evident effect on TCSV and PepYMV accumulation. On the other hand, overexpression of SlSOBIR1 significantly increased the expression of selected defense genes (PR-1a and PR-6) and exacerbated superoxide production in wounded leaves. Our data indicate that the observed modulation of SlSOBIR1 expression is probably triggered by secondary effects of the virus infection process and suggest that SlSOBIR1 is not directly involved in antiviral signaling response.


Assuntos
Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Nicotiana/enzimologia , Fosfotransferases/metabolismo , Doenças das Plantas/virologia , Solanum lycopersicum/enzimologia , Sequência de Aminoácidos , Expressão Gênica , Solanum lycopersicum/genética , Fosfotransferases/genética , Imunidade Vegetal , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Potyvirus/fisiologia , Nicotiana/genética , Nicotiana/imunologia , Tospovirus/fisiologia
9.
Arch Virol ; 159(8): 2181-3, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24634052

RESUMO

The complete nucleotide (nt) sequence of Bidens mosaic virus (BiMV) isolate SP01 was determined and shown to consist of 9,557 nt. Since it shared highest identities in the nt sequence of the whole genome (66-73 %) and in the aa sequence of the polyprotein (60-76 %) with viruses of the potato virus Y subgroup, it was compared with them genetically and biologically. Phylogenetic analysis showed that the closest relative of BiMV is sunflower chlorotic mottle virus, from which it, however, differed significantly in various respects. These results indicate that BiMV should represent a distinct species in the genus Potyvirus.


Assuntos
Bidens/virologia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/isolamento & purificação , Sequência de Bases , Genoma Viral , Dados de Sequência Molecular , Filogenia , Potyvirus/genética , Proteínas Virais/genética
10.
Insect Sci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38562016

RESUMO

Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.

11.
Front Plant Sci ; 14: 1202139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564383

RESUMO

Plumeria pudica, known as bridal bouquet, exhibiting characteristic symptoms of orthotospovirus infection were found in different localities in Brazil. Symptoms were restricted to leaves of the middle and lower thirds of a few branches of each plant. Electron microscopy, molecular analyses, and complete genome sequencing identified the orthotospovirus as groundnut ringspot virus (GRSV),member of the species Orthotospovirus arachianuli. The virus was poorly transmitted mechanically to P. pudica. Reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analyses performed using total RNA extracted from leaf blades, primary veins, petioles, and regions of petiole insertion on branches indicated the presence of GRSV, predominantly in the symptomatic leaf blades. Symptomatic branches propagate vegetatively, often resulting in plants expressing GRSV symptoms. In contrast, vegetative propagation of the asymptomatic branches of infected plants predominantly generates plants without GRSV symptoms. The resistance of P. pudica plants to GRSV infection, restricted systemic viral movement, and expression of symptoms in infected plants suggest that this orthotospovirus does not threaten this ornamental plant.

12.
PeerJ ; 9: e11741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316398

RESUMO

BACKGROUND: The necessity of a competent vector for transmission is a primary ecological factor driving the host range expansion of plant arthropod-borne viruses, with vectors playing an essential role in disease emergence. Cassava begomoviruses severely constrain cassava production in Africa. Curiously, begomoviruses have never been reported in cassava in South America, the center of origin for this crop. It has been hypothesized that the absence of a competent vector in cassava is the reason why begomoviruses have not emerged in South America. METHODS: We performed a country-wide whitefly diversity study in cassava in Brazil. Adults and/or nymphs of whiteflies were collected from sixty-six cassava fields in the main agroecological zones of the country. A total of 1,385 individuals were genotyped based on mitochondrial cytochrome oxidase I sequences. RESULTS: A high species richness was observed, with five previously described species and two putative new ones. The prevalent species were Tetraleurodes acaciae and Bemisia tuberculata, representing over 75% of the analyzed individuals. Although we detected, for the first time, the presence of Bemisia tabaci Middle East-Asia Minor 1 (BtMEAM1) colonizing cassava in Brazil, it was not prevalent. The species composition varied across regions, with fields in the Northeast region showing a higher diversity. These results expand our knowledge of whitefly diversity in cassava and support the hypothesis that begomovirus epidemics have not occurred in cassava in Brazil due to the absence of competent vector populations. However, they indicate an ongoing adaptation process of BtMEAM1 to cassava, increasing the likelihood of begomovirus emergence in this crop.

13.
PeerJ ; 8: e8632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175188

RESUMO

Cassava is a staple food crop in sub-Saharan Africa; it is a rich source of carbohydrates and proteins which currently supports livelihoods of more than 800 million people worldwide. However, its continued production is at stake due to vector-transmitted diseases such as Cassava mosaic disease and Cassava brown streak disease. Currently, the management and control of viral diseases in cassava relies mainly on virus-resistant cultivars of cassava. Thus, the discovery of new target genes for plant virus resistance is essential for the development of more cassava varieties by conventional breeding or genetic engineering. The chloroplast is a common target for plant viruses propagation and is also a potential source for discovering new resistant genes for plant breeding. Non-infected and infected cassava leaf samples were obtained from different locations of East Africa in Tanzania, Kenya and Mozambique. RNA extraction followed by cDNA library preparation and Illumina sequencing was performed. Assembling and mapping of the reads were carried out and 33 partial chloroplast genomes were obtained. Bayesian phylogenetic analysis from 55 chloroplast protein-coding genes of a dataset with 39 taxa was performed and the single nucleotide polymorphisms for the chloroplast dataset were identified. Phylogenetic analysis revealed considerable genetic diversity present in chloroplast partial genome among cultivated cassava of East Africa. The results obtained may supplement data of previously selected resistant materials and aid breeding programs to find diversity and achieve resistance for new cassava varieties.

14.
PeerJ ; 8: e9828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944424

RESUMO

Soybean stem necrosis is caused by cowpea mild mottle virus (CPMMV), transmitted by the whitefly Bemisia tabaci. CPMMV has already been recorded in all major soybean-producing areas of Brazil. The impacts caused by CPMMV to the current Brazilian soybean production are unknown, thus the main objective of this study was to evaluate the effects of CPMMV infection on the main important soybean cultivars grown in the Southern and Midwestern regions of Brazil. Although asymptomatic in some of the tested cultivars, CPMMV infection significantly reduced the plant height, the number of pods per plant and the 1,000-grain weight. In addition, estimated yield losses ranged from 174 to 638 kg ha-1, depending on the cultivar. Evidence of seed transmission of CPMMV was observed in the BMX POTÊNCIA RR cultivar. These results suggest that CPMMV could have an important role in the reduction of soybean productivity in Brazil, but symptomless infections might be hiding the actual impact of this pathogen in commercial fields and infected seeds could be the primary inoculum source of the virus in the field.

15.
Insects ; 11(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260578

RESUMO

By having an extensive territory and suitable climate conditions, South America is one of the most important agricultural regions in the world, providing different kinds of vegetable products to different regions of the world. However, such favorable conditions for plant production also allow the development of several pests, increasing production costs. Among them, whiteflies (Hemiptera: Aleyrodidae) stand out for their potential for infesting several crops and for being resistant to insecticides, having high rates of reproduction and dispersal, besides their efficient activity as virus vectors. Currently, the most important species occurring in South America are Bemisia afer, Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. In this review, a series of studies performed in South America were compiled in an attempt to unify the advances that have been developed in whitefly management in this continent. At first, a background of the current whitefly distribution in South American countries as well as factors affecting them are shown, followed by a background of the whitefly transmitted viruses in South America, addressing their location and association with whiteflies in each country. Afterwards, a series of management strategies are proposed to be implemented in South American fields, including cultural practices and biological and chemical control, finalizing with a section containing future perspectives and directions for further research.

16.
Sci Rep ; 9(1): 6568, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024030

RESUMO

The 37 currently recognized Bemisia tabaci cryptic species are economically important species and contain both primary and secondary endosymbionts, but their diversity has never been mapped systematically across the group. To achieve this, PacBio sequencing of full-length bacterial 16S rRNA gene amplicons was carried out on 21 globally collected species in the B. tabaci complex, and two samples from B. afer were used here as outgroups. The microbial diversity was first explored across the major lineages of the whole group and 15 new putative bacterial sequences were observed. Extensive comparison of our results with previous endosymbiont diversity surveys which used PCR or multiplex 454 pyrosequencing platforms showed that the bacterial diversity was underestimated. To validate these new putative bacteria, one of them (Halomonas) was first confirmed to be present in MED B. tabaci using Hiseq2500 and FISH technologies. These results confirmed PacBio is a reliable and informative venue to reveal the bacterial diversity of insects. In addition, many new secondary endosymbiotic strains of Rickettsia and Arsenophonus were found, increasing the known diversity in these groups. For the previously described primary endosymbionts, one Portiera Operational Taxonomic Units (OTU) was shared by all B. tabaci species. The congruence of the B. tabaci-host and Portiera phylogenetic trees provides strong support for the hypothesis that primary endosymbionts co-speciated with their hosts. Likewise, a comparison of bacterial alpha diversities, Principal Coordinate Analysis, indistinct endosymbiotic communities harbored by different species and the co-divergence analyses suggest a lack of association between overall microbial diversity with cryptic species, further indicate that the secondary endosymbiont-mediated speciation is unlikely to have occurred in the B. tabaci species group.


Assuntos
Hemípteros/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Rickettsia/classificação , Rickettsia/fisiologia , Análise de Sequência de DNA , Simbiose
18.
PLoS One ; 13(7): e0201411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30052670

RESUMO

The whitefly, Bemisia tabaci, is a species complex of more than 40 cryptic species and a major agricultural pest. It causes extensive damage to plants mainly by transmitting plant viruses. There is still a lack of genomic data available for the different whitefly species found in Brazil and their bacterial endosymbionts. Understanding the genetic and transcriptomic composition of these insect pests, the viruses they transmit and the microbiota is crucial to sustainable solutions for farmers to control whiteflies. Illumina RNA-Seq was used to obtain the transcriptome of individual whiteflies from 10 different populations from Brazil including Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED) and New World 2 (NW2). Raw reads were assembled using CLC Genomics Workbench and subsequently mapped to reference genomes. We obtained whitefly complete mitochondrial genomes and draft genomes from the facultative bacterial endosymbiont Hamiltonella for further phylogenetic analyses. In addition, nucleotide sequences of the GroEL chaperonin gene from Hamiltonella from different populations were obtained and analysed. There was concordance in the species clustering using the whitefly complete mitogenome and the mtCOI gene tree. On the other hand, the phylogenetic analysis using the 12 ORF's of Hamiltonella clustered the native species NW2 apart from the exotics MEAM1 and MED. In addition, the amino acid analysis of GroEL chaperonin revealed a deletion only in Hamiltonella infecting NW2 among whiteflies populations analysed which was further confirmed by PCR and Sanger sequencing. The genomic data obtained in this study will aid understanding the functions that Hamiltonella may have in whitefly biology and serve as a reference for further studies regarding whiteflies in Brazil.


Assuntos
Enterobacteriaceae , Perfilação da Expressão Gênica , Variação Genética , Hemípteros/microbiologia , Filogenia , Simbiose/fisiologia , Animais , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo
19.
Sci Rep ; 8(1): 14589, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275487

RESUMO

The Bemisia tabaci is a polyphagous insect and a successful vector of plant viruses. B. tabaci is a species complex and in Brazil native species from the New World (NW) group, as well as the invasive species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) were reported. For better understanding the distribution of the different species four years after the Mediterranean species invasion in Brazil, whiteflies were collected from 237 locations throughout the country between the years of 2013 and 2017, species were identified and the facultative endosymbionts detected. The survey revealed that MEAM1 was the prevalent species found on major crops across Brazil. It is the only species present in North, Northwestern and Central Brazil and was associated with virus-infected plants. MED was found in five States from Southeast to South regions, infesting mainly ornamental plants and was not associated with virus-infected plants. The prevalent endosymbionts identified in MEAM1 were Hamiltonella and Rickettsia; and the mtCOI analysis revealed low genetic diversity for MEAM1. In contrast, several different endosymbionts were identified in MED including Hamiltonella, Rickettsia, Wolbachia and Arsenophonus; and two distinct genetic groups were found based on the mtCOI analysis. Monitoring the distribution of the whiteflies species in Brazil is essential for proper management of this pest.


Assuntos
Alphaproteobacteria/isolamento & purificação , Gammaproteobacteria/isolamento & purificação , Hemípteros/classificação , Hemípteros/crescimento & desenvolvimento , Espécies Introduzidas , Filogeografia , Simbiose , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Animais , Brasil , Complexo IV da Cadeia de Transporte de Elétrons/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Variação Genética , Hemípteros/genética , Hemípteros/microbiologia
20.
Virus Res ; 109(2): 175-80, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15763148

RESUMO

The isolate AF199 of Lettuce mosaic virus (LMV, genus Potyvirus) causes local lesions followed by systemic wilting and plant death in the lettuce cultivars Ithaca and Vanguard 75. Analysis of the phenotype of virus chimeras revealed that a region within the P1 protein coding region (nucleotides 112-386 in the viral genome) and/or another one within the CI protein coding region (nucleotides 5496-5855) are sufficient together to cause the lethal wilting in Ithaca, but not in Vanguard 75. This indicates that the determinants of this particular symptom are different in these two lettuce cultivars. The wilting phenotype was not directly correlated with differences in the deduced amino acid sequence of these two regions. Furthermore, transient expression of the LMV-AF199 proteins, separately or in combination, did not induce local necrosis or any other visible reaction in the plants. Together, these results suggest that the systemic wilting reaction might be due to RNA rather than protein sequences.


Assuntos
Genes Virais , Lactuca/virologia , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/patogenicidade , RNA Helicases/genética , RNA Helicases/fisiologia , RNA Viral/fisiologia , Proteínas Virais/genética , Proteínas Virais/fisiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA