Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 891: 164375, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245813

RESUMO

Concerns about the possible effects of pesticide residues on both the environment and human health have increased worldwide. Bioremediation by the use of microorganisms to degrade or remove these residues has emerged as a powerful technology. However, the knowledge about the potential of different microorganisms for pesticide degradation is limited. This study focused on the isolation and characterisation of bacterial strains with the potential to degrade the active fungicide ingredient azoxystrobin. Potential degrading bacteria were tested in vitro and in the greenhouse, and the genomes of the best degrading strains were sequenced and analysed. We identified and characterised 59 unique bacterial strains, which were further tested in vitro and in greenhouse trials for their degradation activity. The best degraders from a foliar application trial in the greenhouse were identified as Bacillus subtilis strain MK101, Pseudomonas kermanshahensis strain MK113 and Rhodococcus fascians strain MK144 and analysed by whole genome sequencing. Genome analysis revealed that these three bacterial strains encode several genes predicted to be involved in the degradation of pesticides e.g., benC, pcaG, pcaH, however we could not find any specific gene previously reported to be involved in azoxystrobin degradation e.g., strH. Genome analysis pinpointed to some potential activities involved in plant growth promotion.


Assuntos
Lactuca , Praguicidas , Humanos , Lactuca/metabolismo , Rizosfera , Estrobilurinas , Pirimidinas/análise , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA