Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 75(6): 1062-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23738654

RESUMO

Reverse genetics approaches have contributed enormously to the elucidation of gene functions in plastid genomes and the determination of structure-function relationships in chloroplast multiprotein complexes. Gene knock-outs are usually performed by disrupting the reading frame of interest with a selectable marker cassette. Site-directed mutagenesis is done by placing the marker into the adjacent intergenic spacer and relying on co-integration of the desired mutation by homologous recombination. These strategies are not applicable to genes residing in large multigene operons or other gene-dense genomic regions, because insertion of the marker cassette into an operon-internal gene or into the nearest intergenic spacer is likely to interfere with expression of adjacent genes in the operon or disrupt cis-elements for the expression of neighboring genes and operons. Here we have explored the possibility of using a co-transformation strategy to mutate a small gene of unknown function (psbN) that is embedded in a complex multigene operon. Although inactivation of psbN resulted in strong impairment of photosynthesis, homoplasmic knock-out lines were readily recovered by co-transformation with a selectable marker integrating >38 kb away from the targeted psbN. Our results suggest co-transformation as a suitable strategy for the functional analysis of plastid genes and operons, which allows the recovery of unselected homoplasmic mutants even if the introduced mutations entail a significant selective disadvantage. Moreover, our data provide evidence for involvement of the psbN gene product in the biogenesis of both photosystem I and photosystem II. We therefore propose to rename the gene product 'photosystem biogenesis factor 1' and the gene pbf1.


Assuntos
Técnicas de Inativação de Genes/métodos , Genomas de Plastídeos , Nicotiana/genética , Óperon/genética , Genética Reversa , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Fenótipo , Fotossíntese/genética , Processamento Pós-Transcricional do RNA , Nicotiana/metabolismo , Transcrição Gênica , Transformação Genética
2.
Plant Physiol ; 159(2): 579-91, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22517411

RESUMO

Photosystem biogenesis in the thylakoid membrane is a highly complicated process that requires the coordinated assembly of nucleus-encoded and chloroplast-encoded protein subunits as well as the insertion of hundreds of cofactors, such as chromophores (chlorophylls, carotenoids) and iron-sulfur clusters. The molecular details of the assembly process and the identity and functions of the auxiliary factors involved in it are only poorly understood. In this work, we have characterized the chloroplast genome-encoded ycf4 (for hypothetical chloroplast reading frame no. 4) gene, previously shown to encode a protein involved in photosystem I (PSI) biogenesis in the unicellular green alga Chlamydomonas reinhardtii. Using stable transformation of the chloroplast genome, we have generated ycf4 knockout plants in the higher plant tobacco (Nicotiana tabacum). Although these mutants are severely affected in their photosynthetic performance, they are capable of photoautotrophic growth, demonstrating that, different from Chlamydomonas, the ycf4 gene product is not essential for photosynthesis. We further show that ycf4 knockout plants are specifically deficient in PSI accumulation. Unaltered expression of plastid-encoded PSI genes and biochemical analyses suggest a posttranslational action of the Ycf4 protein in the PSI assembly process. With increasing leaf age, the contents of Ycf4 and Y3IP1, another auxiliary factor involved in PSI assembly, decrease strongly, whereas PSI contents remain constant, suggesting that PSI is highly stable and that its biogenesis is restricted to young leaves.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Sequência de Aminoácidos , Cloroplastos/metabolismo , Clonagem Molecular , DNA de Plantas/genética , DNA de Plantas/metabolismo , Técnicas de Inativação de Genes , Inativação Gênica , Genes de Plantas , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fases de Leitura Aberta , Fenótipo , Fotossíntese , Complexo de Proteína do Fotossistema I/genética , Mapeamento Físico do Cromossomo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Estabilidade Proteica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA