Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 634(8036): 1070-1074, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39415016

RESUMO

Owing to their similarities with giant exoplanets, brown dwarf companions of stars provide insights into the fundamental processes of planet formation and evolution. From their orbits, several brown dwarf companions are found to be more massive than theoretical predictions given their luminosities and the ages of their host stars1-3. Either the theory is incomplete or these objects are not single entities. For example, they could be two brown dwarfs each with a lower mass and intrinsic luminosity1,4. The most problematic example is Gliese 229 B (refs. 5,6), which is at least 2-6 times less luminous than model predictions given its dynamical mass of 71.4 ± 0.6 Jupiter masses (MJup) (ref. 1). We observed Gliese 229 B with the GRAVITY interferometer and, separately, the CRIRES+ spectrograph at the Very Large Telescope. Both sets of observations independently resolve Gliese 229 B into two components, Gliese 229 Ba and Bb, settling the conflict between theory and observations. The two objects have a flux ratio of 0.47 ± 0.03 at a wavelength of 2 µm and masses of 38.1 ± 1.0 and 34.4 ± 1.5 MJup, respectively. They orbit each other every 12.1 days with a semimajor axis of 0.042 astronomical units (AU). The discovery of Gliese 229 BaBb, each only a few times more massive than the most massive planets, and separated by 16 times the Earth-moon distance, raises new questions about the formation and prevalence of tight binary brown dwarfs around stars.

2.
Nature ; 614(7949): 659-663, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623548

RESUMO

Transmission spectroscopy1-3 of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres4,5. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species-in particular the primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5-5.5 µm atmospheric transmission spectrum of WASP-39b8, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec's PRISM mode9 as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10-12. We robustly detect several chemical species at high significance, including Na (19σ), H2O (33σ), CO2 (28σ) and CO (7σ). The non-detection of CH4, combined with a strong CO2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.

3.
Nature ; 557(7703): 68-70, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29720632

RESUMO

Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres 1 . Searches for helium, however, have hitherto been unsuccessful 2 . Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant 3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 ± 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 1010 to 3 × 1011 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA