Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Exp Dermatol ; 32(11): 1870-1883, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37605856

RESUMO

Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.


Assuntos
Pele Artificial , Pele , Humanos , Camundongos , Animais , Pele/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Células Epidérmicas/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
2.
Amino Acids ; 54(9): 1311-1326, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35817992

RESUMO

Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.


Assuntos
Fosfolipídeos , Fosforilcolina , Idoso , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Transtornos da Memória/metabolismo , Fosfolipídeos/metabolismo , Fosforilcolina/metabolismo , Ratos
3.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232414

RESUMO

Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice. Using mass spectrometric lipidomics we found a reduction of age-related accumulation of storage lipids in the epidermis of autophagy-deficient mice, and specific changes in chain length and saturation of fatty acids in several lipid classes. Transcriptomics and immunostaining suggest that these changes are accompanied by changes in expression and localisation of lipid and fatty acid transporter proteins, most notably fatty acid binding protein 5 (FABP5) in autophagy knockouts. Thus, maintaining autophagic activity at an advanced age may be necessary to maintain epidermal lipid homeostasis in mammals.


Assuntos
Epiderme , Lipidômica , Animais , Autofagia/genética , Epiderme/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Queratina-14 , Lipídeos , Mamíferos/metabolismo , Camundongos
4.
J Invest Dermatol ; 143(10): 1906-1918.e8, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37085042

RESUMO

Atopic dermatitis (AD) is a complex disease characterized by chronic recurring eczema and pruritus. In addition, patients with AD display increased cutaneous and systemic levels of oxidative damage markers, whose source remains elusive. In this study, we investigated oxidative and mitochondrial stress in AD epidermis. The levels of superoxide dismutase 2 and hydrogen peroxide are augmented in the mitochondria of flaky tail (ft/ft) mouse keratinocytes, which is associated with the inhibition of the glutathione system and catalase. Furthermore, reduced levels of glutathione peroxidase 4 are associated with accumulation of malondialdehyde, 4-hydroxy-2-nonenal, and oxidized phosphatidylcholines in ft/ft epidermis. Cytochrome c is markedly increased in ft/ft epidermis, hence showing mitochondrial stress. Topical application of MitoQ, which is a mitochondrial-targeting antioxidant, to ft/ft mouse skin reduced damage to macromolecules and inflammation and restored epidermal homeostasis. Absence of alteration in the expression of superoxide dismutase 2, catalase, and glutathione peroxidase 4 and limited lipid peroxidation as well as oxidized phosphatidylcholines in the epidermis of Flg-/- mice suggest that FLG deficiency marginally contributes to oxidative stress in ft/ft epidermis. Increased superoxide dismutase 2, lipid peroxidation, and cytochrome c in the epidermis of patients with AD, associated with reduced antioxidant response in primary AD keratinocytes, corroborate mitochondrial dysfunction and lack of cellular adjustment to oxidative stress in AD epidermis.


Assuntos
Dermatite Atópica , Eczema , Humanos , Camundongos , Animais , Dermatite Atópica/metabolismo , Catalase/genética , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes , Citocromos c/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo
5.
Biofactors ; 49(3): 684-698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36772996

RESUMO

NRF2 is a master regulator of the cellular protection against oxidative damage in mammals and of multiple pathways relevant in the mammalian aging process. In the epidermis of the skin NRF2 contributes additionally to the formation of an antioxidant barrier to protect from environmental insults and is involved in the differentiation process of keratinocytes. In chronological aging of skin, the capacity for antioxidant responses and the ability to restore homeostasis after damage are impaired. Surprisingly, in absence of extrinsic stressors, NRF2 deficient mice do not show any obvious skin phenotype, not even at old age. We investigated the differences in chronological epidermal aging of wild type and NRF2-deficient mice to identify the changes in aged epidermis that may compensate for absence of this important transcriptional regulator. While both genotypes showed elevated epidermal senescence markers (increased Lysophospholipids, decreased LaminB1 expression), the aged NRF2 deficient mice displayed disturbed epidermal differentiation manifested in irregular keratin 10 and loricrin expression. The tail skin displayed less age-related epidermal thinning and a less pronounced decline in proliferating basal epidermal cells compared to the wildtype controls. The stratum corneum lipid composition also differed, as we observed elevated production of barrier protective linoleic acid (C18:2) and reduced abundance of longer chain saturated lignoceric acid (C24:0) among the stratum corneum fatty acids in the aged NRF2-deficient mice. Thus, despite epidermal differentiation being disturbed in aged NRF2-deficient animals in homeostasis, adaptations in keratinocyte proliferation and barrier lipid synthesis could explain the lack of a more severe phenotype.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Cauda , Epiderme/metabolismo , Células Epidérmicas , Queratinócitos , Diferenciação Celular/genética , Envelhecimento/genética , Mamíferos
6.
Autophagy ; 18(5): 1005-1019, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34491140

RESUMO

ABBREVIATIONS: ATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.


Assuntos
Senilidade Prematura , Sebo , Animais , Autofagia/genética , Camundongos , Perilipina-2 , Feromônios , Fosfatidilserinas , Fosfolipídeos
7.
J Invest Dermatol ; 142(1): 4-11.e1, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34924150

RESUMO

Although lipids are crucial molecules for cell structure, metabolism, and signaling in most organs, they have additional specific functions in the skin. Lipids are required for the maintenance and regulation of the epidermal barrier, physical properties of the skin, and defense against microbes. Analysis of the lipidome-the totality of lipids-is of similar complexity to those of proteomics or other omics, with lipid structures ranging from simple, linear, to highly complex structures. In addition, the ordering and chemical modifications of lipids have consequences on their biological function, especially in the skin. Recent advances in analytic capability (usually with mass spectrometry), bioinformatic processing, and integration with other dermatological big data have allowed researchers to increasingly understand the roles of specific lipid species in skin biology. In this paper, we review the techniques used to analyze skin lipidomics and epilipidomics.


Assuntos
Lipidômica/métodos , Pele/metabolismo , Animais , Big Data , Pesquisa Biomédica , Biologia Computacional , Epigênese Genética , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas , Pele/patologia
8.
Mol Ther Methods Clin Dev ; 21: 14-27, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33768126

RESUMO

Cell-free secretomes represent a promising new therapeutic avenue in regenerative medicine, and γ-irradiation of human peripheral blood mononuclear cells (PBMCs) has been shown to promote the release of paracrine factors with high regenerative potential. Recently, the use of alternative irradiation sources, such as artificially generated ß- or electron-irradiation, is encouraged by authorities. Since the effect of the less hazardous electron-radiation on the production and functions of paracrine factors has not been tested so far, we compared the effects of γ- and electron-irradiation on PBMCs and determined the efficacy of both radiation sources for producing regenerative secretomes. Exposure to 60 Gy γ-rays from a radioactive nuclide and 60 Gy electron-irradiation provided by a linear accelerator comparably induced cell death and DNA damage. The transcriptional landscapes of PBMCs exposed to either radiation source shared a high degree of similarity. Secretion patterns of proteins, lipids, and extracellular vesicles displayed similar profiles after γ- and electron-irradiation. Lastly, we detected comparable biological activities in functional assays reflecting the regenerative potential of the secretomes. Taken together, we were able to demonstrate that electron-irradiation is an effective, alternative radiation source for producing therapeutic, cell-free secretomes. Our study paves the way for future clinical trials employing secretomes generated with electron-irradiation in tissue-regenerative medicine.

9.
J Invest Dermatol ; 141(4S): 993-1006.e15, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33333126

RESUMO

During aging, skin accumulates senescent cells. The transient presence of senescent cells, followed by their clearance by the immune system, is important in tissue repair and homeostasis. The persistence of senescent cells that evade clearance contributes to the age-related deterioration of the skin. The senescence-associated secretory phenotype of these cells contains immunomodulatory molecules that facilitate clearance but also promote chronic damage. Here, we investigated the epilipidome-the oxidative modifications of phospholipids-of senescent dermal fibroblasts, because these molecules are among the bioactive lipids that were recently identified as senescence-associated secretory phenotype factors. Using replicative- and stress- induced senescence protocols, we identified lysophosphatidylcholines as universally elevated in senescent fibroblasts, whereas other oxidized lipids displayed a pattern that was characteristic for the used senescence protocol. When we tested the lysophosphatidylcholines for senescence-associated secretory phenotype activity, we found that they elicit chemokine release in nonsenescent fibroblasts but also interfere with toll-like receptor 2 and 6/CD36 signaling and phagocytic capacity in macrophages. Using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging, we localized two lysophosphatidylcholine species in aged skin. This suggests that lysophospholipids may facilitate immune evasion and low-grade chronic inflammation in skin aging.


Assuntos
Senescência Celular/imunologia , Derme/patologia , Fibroblastos/patologia , Lisofosfatidilcolinas/metabolismo , Envelhecimento da Pele/imunologia , Idoso , Células Cultivadas , Quimiocinas/metabolismo , Derme/citologia , Derme/imunologia , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Pessoa de Meia-Idade , Oxirredução , Fagocitose/imunologia , Cultura Primária de Células
10.
Exp Gerontol ; 130: 110780, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794850

RESUMO

The aging of the skin is the most visible and obvious manifestation of organismal aging and may serve as a predictor of life expectancy and health. It is, however, also the human desire for long-lasting beauty that further raises interests in the topic, and thus considerable means and efforts are put into studying the mechanisms of skin aging in basic and applied research. Both medical und non-medical interests are of benefit for skin research in general because the results from these studies help to deepen our understanding of the complex molecular, biological, cell signaling, developmental and immunological processes in this organ. In fact, the skin is an ideal organ to observe and analyze the impact of extrinsic and intrinsic drivers of aging. Within the past five years technological advances like lineage tracing of cells in model organisms, intra-vital microscopy, nucleic acid sequencing at the single cell level, and high resolution mass spectrometry have allowed to study aging and senescence of individual skin cells within the tissue context, their signaling and communication, and to derive new hypotheses for experimental studies in vitro. In this short review we will discuss very recent developments that promise to extend the existing knowledge on cell aging and senescence of dermal fibroblasts and epidermal keratinocytes in skin aging.


Assuntos
Senescência Celular , Fibroblastos/citologia , Queratinócitos/citologia , Envelhecimento da Pele/fisiologia , Epiderme/fisiologia , Humanos
11.
Front Endocrinol (Lausanne) ; 11: 607076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551998

RESUMO

Lipids are highly diverse biomolecules crucial for the formation and function of cellular membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids additionally serve for the formation of the epidermal barrier and as surface lipids, together regulating permeability, physical properties, acidification and the antimicrobial defense. Recent advances in accuracy and specificity of mass spectrometry have allowed studying enzymatic and non-enzymatic modifications of lipids-the epilipidome-multiplying the known diversity of molecules in this class. As the skin is an organ that is frequently exposed to oxidative-, chemical- and thermal stress, and to injury and inflammation, it is an ideal organ to study epilipidome dynamics, their causes, and their biological consequences. Recent studies uncover loss or gain in biological function resulting from either specific modifications or the sum of the modifications of lipids. These studies suggest an important role for the epilipidome in stress responses and immune regulation in the skin. In this minireview we provide a short survey of the recent developments on causes and consequences of epilipidomic changes in the skin or in cell types that reside in the skin.


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Pele/metabolismo , Envelhecimento/metabolismo , Animais , Humanos , Inflamação/metabolismo , Estresse Oxidativo , Estresse Fisiológico/fisiologia
12.
Front Aging Neurosci ; 12: 611572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488384

RESUMO

Cognitive processes require striatal activity. The underlying molecular mechanisms are widely unknown. For this reason the striatal transcriptome of young (YM), aged cognitively impaired (OMB), and unimpaired (OMG) male rats was analyzed. The global comparison of transcripts reveal a higher number of differences between OMG and YM as compared to OMB and YM. Hierarchical clustering detects differences in up- and down-regulated gene clusters in OMG and OMB when compared to YM. In OMG we found more single genes to be specifically regulated in this group than in OMB when compared to young. These genes were considered as cognition specific, whereas genes shared in OMG and OMB were considered as age specific. OMB specific up-regulated genes are related to negative control of cell differentiation and transcription (Hopx), to phagocytosis (Cd202) and cell adhesion (Pcdhb21), whereas down-regulated genes are related to associative learning, behavioral fear response and synaptic transmission (Gabra5). OMG specific up-regulated genes are in the context of maintenance of transcription and estrogen receptor signaling (Padi2, Anxa3), signal transduction [Rassf4, Dock8)], sterol regulation (Srebf1), and complement activity (C4a, C4b). Down-regulated genes are related to lipid oxidation reduction processes (Far2) and positive regulation of axon extension (Islr2). These relations were supported by pathway analysis, which reveals cholesterol metabolism processes in both aged group and cholesterol biosynthesis specifically in OMG; adipogenesis and focal adhesion in OMB. In OMG glucuronidation, estrogen metabolism, inflammatory responses and TGF beta signaling where detected as specific for this group. Signal transduction of the sphingosine-1-phospate-receptor (S1P) receptor was the main pathway difference in the comparison of OMB and OMG with downregulated genes in the first group. This difference could also be observed in the OMB vs. YM comparison but not in the OMG vs. YM analysis. Thus, an up-regulation of cognition related genes could be observed in OMG compared to OMB rats. The S1P pathway discriminated between OMB and OMG as well as between OMB and OMG. Since this pathway has been described as essential for cognitive processes in the striatum of mice, it may, among steroid hormone signaling, significantly contribute to the maintenance of cognitive processes in OMG.

13.
Redox Biol ; 37: 101583, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32713735

RESUMO

The epidermis is a multi-layered epithelium that consists mainly of keratinocytes which proliferate in its basal layer and then differentiate to form the stratum corneum, the skin's ultimate barrier to the environment. During differentiation keratinocyte function, chemical composition, physical properties, metabolism and secretion are profoundly changed. Extrinsic or intrinsic stressors, like ultraviolet (UV) radiation thus may differently affect the epidermal keratinocytes, depending on differentiation stage. Exposure to UV elicits the DNA damage responses, activation of pathways which detoxify or repair damage or induction of programmed cell death when the damage was irreparable. Recently, rapid diversion of glucose flux into the pentose phosphate pathway (PPP) was discovered as additional mechanism by which cells rapidly generate reduction equivalents and precursors for nucleotides - both being in demand after UV damage. There is however little known about the correlation of such metabolic activity with differentiation state, cell damage and tissue localization of epidermal cells. We developed a method to correlate the activity of G6PD, the first and rate-limiting enzyme of this metabolic UV response, at cellular resolution to cell type, differentiation state, and cell damage in human skin and in organotypic reconstructed epidermis. We thereby could verify rapid activation of G6PD as an immediate UVB response not only in basal but also in differentiating epidermal keratinocytes and found increased activity in cells which initiated DNA damage responses. When keratinocytes had been UVB irradiated before organotypic culture, their distribution within the skin equivalent was abnormal and the G6PD activity was reduced compared to neighboring cells. Finally, we found that the anti-diabetic and potential anti-aging drug metformin strongly induced G6PD activity throughout reconstructed epidermis. Activation of the protective pentose phosphate pathway may be useful to enhance the skin's antioxidant defense systems and DNA damage repair capacity on demand.


Assuntos
Estresse Oxidativo , Preparações Farmacêuticas , Pele , Raios Ultravioleta , Adulto , Diferenciação Celular , Células Cultivadas , Humanos , Queratinócitos , Preparações Farmacêuticas/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
14.
Free Radic Biol Med ; 144: 256-265, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31004751

RESUMO

Dermatological research is a major beneficiary of the rapidly developing advances in lipid analytic technology and of bioinformatic tools which help to decipher and interpret the accumulating big lipid data. At its interface with the environment, the epidermis develops a blend of lipids that constitutes the epidermal lipid barrier, essential for the protection from water loss and entry of dangerous noxae. Apart from their structural role in the barrier, novel intra- and inter-cellular signaling functions of lipids and their oxidation products have been uncovered in most cutaneous cell types over the last decades, and the discovery rate has been boosted by the advent of high resolution and -throughput mass spectrometric techniques. Our understanding of epidermal development has benefited from studies on fetal surface lipids, which appear to signal for adaptation to desiccation post partum, and from studies on the dynamics of epidermal lipids during adjustment to the atmosphere in the first months of life. At birth, external insults begin to challenge the skin and its lipids, and recent years have yielded ample insights into the dynamics of lipid synthesis and -oxdiation after UV exposure, and upon contact with sensitizers and irritants. Psoriasis and atopic dermatitis are the most common chronic inflammatory skin diseases, affecting at least 3% and 7% of the global population, respectively. Consequently, novel (redox-) lipidomic techniques have been applied to study systemic and topical lipid abnormalities in patient cohorts. These studies have refined the knowledge on eicosanoid signaling in both diseases, and have identified novel biomarkers and potential disease mediators, such as lipid antigens recognized by psoriatic T cells, as well as ceramide species, which specifically correlate with atopic dermatitis severity. Both biomarkers have yielded novel mechanistic insights. Finally, the technological progress has enabled studies to be performed that have monitored the consequences of diet, lifestyle, therapy and cosmetic intervention on the skin lipidome, highlighting the translational potential of (redox-) lipidomics in dermatology.


Assuntos
Acne Vulgar/metabolismo , Ceramidas/metabolismo , Dermatite Atópica/metabolismo , Eicosanoides/metabolismo , Lipidômica/tendências , Psoríase/metabolismo , Acne Vulgar/diagnóstico , Acne Vulgar/imunologia , Acne Vulgar/patologia , Adulto , Autoantígenos/imunologia , Autoantígenos/metabolismo , Biomarcadores/metabolismo , Ceramidas/imunologia , Criança , Dermatite Atópica/diagnóstico , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Eicosanoides/imunologia , Feto , Humanos , Metabolismo dos Lipídeos , Oxirredução , Psoríase/diagnóstico , Psoríase/imunologia , Psoríase/patologia , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
15.
Mech Ageing Dev ; 172: 35-44, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29103984

RESUMO

Phospholipid oxidation products (OxPL) are versatile stress signaling mediators in the skin. These lipid signaling molecules can be generated non-enzymatically or enzymatically by ultraviolet light, the major extrinsic skin aging factor. OxPL regulate cytoprotective, immunological and metabolic adaptation of the skin to oxidant stress. We here investigated whether the scavenger receptor Oxidized Low Density Lipoprotein Receptor 1 (OLR1, LOX-1) would have a function in cutaneous oxPL signaling. We found, that OLR1 is expressed in several cutaneous cell types, most prominently in cells of the sebaceous gland and in keratinocytes. We repressed OLR1 expression with siRNA in SZ95 sebocytes, exposed cells to oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and performed transcriptomic profiling. Bioinformatic analysis revealed that OxPL exposure induced the Nrf2 antioxidant stress response and aldosterone signaling. The analysis also revealed that OLR1 is not required for the transcriptional regulation induced by oxidized PAPC but interestingly, OLR1 knockdown affected expression of CNN2, HMRR, ITGB6 and KIF20A, all genes governing cell proliferation and motility. We identify sebocytes as cutaneous cells responsive to lipid mediated redox stress which is not dependent on the scavenger receptor OLR1.


Assuntos
Regulação da Expressão Gênica , Mitose , Receptores Depuradores Classe E/deficiência , Pele/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Oxirredução/efeitos dos fármacos , Fosfatidilcolinas/farmacologia , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA