Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042803

RESUMO

Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.


Assuntos
Sequência de Bases/genética , Genômica/tendências , Viridiplantae/genética , Biodiversidade , Evolução Biológica , Elementos de DNA Transponíveis/genética , Ecologia , Ecossistema , Embriófitas/genética , Evolução Molecular , Genoma , Genoma de Planta/genética , Genômica/métodos , Disseminação de Informação/métodos , Armazenamento e Recuperação da Informação/métodos , Filogenia , Plantas/genética
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042809

RESUMO

The Earth BioGenome Project (EBP) is an audacious endeavor to obtain whole-genome sequences of representatives from all eukaryotic species on Earth. In addition to the project's technical and organizational challenges, it also faces complicated ethical, legal, and social issues. This paper, from members of the EBP's Ethical, Legal, and Social Issues (ELSI) Committee, catalogs these ELSI concerns arising from EBP. These include legal issues, such as sample collection and permitting; the applicability of international treaties, such as the Convention on Biological Diversity and the Nagoya Protocol; intellectual property; sample accessioning; and biosecurity and ethical issues, such as sampling from the territories of Indigenous peoples and local communities, the protection of endangered species, and cross-border collections, among several others. We also comment on the intersection of digital sequence information and data rights. More broadly, this list of ethical, legal, and social issues for large-scale genomic sequencing projects may be useful in the consideration of ethical frameworks for future projects. While we do not-and cannot-provide simple, overarching solutions for all the issues raised here, we conclude our perspective by beginning to chart a path forward for EBP's work.


Assuntos
Espécies em Perigo de Extinção/legislação & jurisprudência , Ética em Pesquisa , Genômica , Animais , Biosseguridade/ética , Biosseguridade/legislação & jurisprudência , Genômica/ética , Genômica/legislação & jurisprudência , Humanos
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042801

RESUMO

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/ética , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Genoma , Genômica/métodos , Humanos , Filogenia
4.
Mol Phylogenet Evol ; 170: 107440, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192919

RESUMO

The Indo-Malayan Realm is a biogeographic realm that extends from the Indian Subcontinent to the islands of Southeast Asia (Malay Archipelago). Despite being megadiverse, evolutionary hypotheses explaining taxonomic diversity in this region have been rare. Here, we investigate the role of geoclimatic events such as Himalayan orogeny and monsoon intensification in the diversification of the ginger-lilies (Hedychium J.Koenig: Zingiberaceae). We first built a comprehensive, time-calibrated phylogeny of Hedychium with 75% taxonomic and geographic sampling. We found that Hedychium is a very young lineage that originated in Northern Indo-Burma, in the Late Miocene (c. 10.6 Ma). This was followed by a late Neogene and early Quaternary diversification, with multiple dispersal events to Southern Indo-Burma, Himalayas, Peninsular India, and the Malay Archipelago. The most speciose clade IV i.e., the predominantly Indo-Burmese clade also showed a higher diversification rate, suggesting its recent rapid radiation. Our divergence dating and GeoHiSSE results demonstrate that the diversification of Hedychium was shaped by both the intensifications in the Himalayan uplift as well as the Asian monsoon. Ancestral character-state reconstructions identified the occurrence of vegetative dormancy in both clades I and II, whereas the strictly epiphytic growth behavior, island dwarfism, lack of dormancy, and a distinct environmental niche were observed only in the predominantly island clade i.e., clade III. Finally, we show that the occurrence of epiphytism in clade III corresponds with submergence due to sea-level changes, suggesting it to be an adaptive trait. Our study highlights the role of recent geoclimatic events and environmental factors in the diversification of plants within the Indo-Malayan Realm and the need for collaborative work to understand biogeographic patterns within this understudied region. This study opens new perspectives for future biogeographic studies in this region and provides a framework to explain the taxonomic hyperdiversity of the Indo-Malayan Realm.


Assuntos
Zingiber officinale , Zingiberaceae , Sudeste Asiático , Evolução Biológica , Filogenia , Filogeografia , Zingiberaceae/genética
5.
Am J Bot ; 109(9): 1410-1427, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862825

RESUMO

PREMISE: Hedychium J. Koenig (Zingiberaceae) is endemic to the Indo-Malayan Realm and is known for its colorful and fragrant flowers. Historically, two different pollination syndromes characterize Hedychium: diurnal or bird pollination, and nocturnal or moth pollination. In this study, we aim to understand the evolution of nocturnal and diurnal flowers, and to test its putative association with lineage diversification in Hedychium. METHODS: A molecular tree of Hedychium was used as a scaffold upon which we estimated ancestral character states, phylogenetic signals, and correlations for certain categorical and continuous floral traits. Furthermore, we used phylomorphospace and trait-dependent diversification rate estimation analyses to understand phenotypic evolution and associated lineage diversification in Hedychium. RESULTS: Although floral color and size lacked any association with specific pollinators, white or pale flowers were most common in the early branching clades when compared to bright-colored flowers, which were more widely represented in the most-derived clade IV. Five categorical and two continuous characters were identified to have informative evolutionary patterns, which also emphasized that ecology may have played a critical role in the diversification of Hedychium. CONCLUSIONS: From our phylogenetic analyses and ecological observations, we conclude that specializations in pollinator interactions are rare in the hyperdiverse clade IV, thus challenging the role of both moth-specialization and bird-specialization as central factors in the diversification of Hedychium. However, our results also suggest that clade III (predominantly island clade) may show specializations, and future studies should investigate ecological and pollinator interactions, along with inclusion of new traits such as floral fragrance and anthesis time.


Assuntos
Mariposas , Zingiberaceae , Animais , Evolução Biológica , Aves/genética , Flores/genética , Mariposas/genética , Filogenia , Polinização
6.
Proc Natl Acad Sci U S A ; 115(17): 4325-4333, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29686065

RESUMO

Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Planeta Terra
7.
Ecotoxicol Environ Saf ; 208: 111691, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396023

RESUMO

DNA barcoding is an emerging molecular identification and classification technology that has been applied to medicinal plants since 2008. The application of this technique has greatly ensured the safety and effectiveness of medicinal materials. In this paper, we review the application of DNA barcoding and some related technologies over the past 10 years with respect to improving our knowledge of medicinal plant identification and authentication. From single locus-based DNA barcodes to combined markers to genome-scale levels, DNA barcodes contribute more and more genetic information. At the same time, other technologies, such as high-resolution melting (HRM), have been combined with DNA barcoding. With the development of next-generation sequencing (NGS), metabarcoding technology has also been shown to identify species in mixed samples successfully. As a widely used and effective tool, DNA barcoding will become more useful over time in the field of medicinal plants.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Plantas Medicinais/genética , Sequenciamento de Nucleotídeos em Larga Escala
8.
Proc Natl Acad Sci U S A ; 113(3): 680-5, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729867

RESUMO

The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.


Assuntos
Adaptação Fisiológica , Altitude , Extinção Biológica , Aquecimento Global , Temperatura Alta , Insetos/fisiologia , Clima Tropical , Aclimatação , Animais , Costa Rica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Geografia , Haplótipos , Herbivoria , Umidade , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie
9.
Mol Phylogenet Evol ; 128: 55-68, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063997

RESUMO

Many cases of rapid evolutionary radiations in plant and animal lineages are known; however phylogenetic relationships among these lineages have been difficult to resolve by systematists. Increasing amounts of genomic data have been sequentially applied in an attempt to resolve these radiations, dissecting their evolutionary patterns into a series of bifurcating events. Here we explore one such rapid radiation in the tropical plant order Zingiberales (the bananas and relatives) which includes eight families, approximately 110 genera, and more than 2600 species. One clade, the "Ginger families", including (Costaceae + Zingiberaceae) (Marantaceae + Cannaceae), has been well-resolved and well-supported in all previous studies. However, well-supported reconstructions among the "Banana families" (Musaceae, Heliconiaceae, Lowiaceae, Strelitziaceae), which most likely diverged about 90 Mya, have been difficult to confirm. Supported with anatomical, morphological, single locus, and genome-wide data, nearly every possible phylogenetic placement has been proposed for these families. In an attempt to resolve this complex evolutionary event, hybridization-based target enrichment was used to obtain sequences from up to 378 putatively orthologous low-copy nuclear genes (all ≥ 960 bp). Individual gene trees recovered multiple topologies among the early divergent lineages, with varying levels of support for these relationships. One topology of the "Banana families" (Musaceae (Heliconiaceae (Lowiaceae + Strelitziaceae))), which has not been suggested until now, was almost consistently recovered in all multilocus analyses of the nuclear dataset (concatenated - ExaML, coalescent - ASTRAL and ASTRID, supertree - MRL, and Bayesian concordance - BUCKy). Nevertheless, the multiple topologies recovered among these lineages suggest that even large amounts of genomic data might not be able to fully resolve relationships at this phylogenetic depth. This lack of well-supported resolution could suggest methodological problems (i.e., violation of model assumptions in both concatenated and coalescent analyses) or more likely reflect an evolutionary history shaped by an explosive, rapid, and nearly simultaneous polychotomous radiation in this group of plants towards the end of the Cretaceous, perhaps driven by vertebrate pollinator selection.


Assuntos
Genômica , Filogenia , Clima Tropical , Zingiberales/classificação , Zingiberales/genética , Teorema de Bayes , Núcleo Celular/genética , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta/genética
10.
Oecologia ; 186(3): 765-782, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29302802

RESUMO

Trade-offs among plant functional traits indicate diversity in plant strategies of growth and survival. The leaf economics spectrum (LES) reflects a trade-off between short-term carbon gain and long-term leaf persistence. A related trade-off, between foliar growth and anti-herbivore defense, occurs among plants growing in contrasting resource regimes, but it is unclear whether this trade-off is maintained within plant communities, where resource gradients are minimized. The LES and the growth-defense trade-off involve related traits, but the extent to which these trade-off dimensions are correlated is poorly understood. We assessed the relationship between leaf economic and anti-herbivore defense traits among sunlit foliage of 345 canopy trees in 83 species on Barro Colorado Island, Panama. We quantified ten traits related to resource allocation and defense, and identified patterns of trait co-variation using multivariate ordination. We tested whether traits and ordination axes were correlated with patterns of phylogenetic relatedness, juvenile demographic trade-offs, or topo-edaphic variation. Two independent axes described ~ 60% of the variation among canopy trees. Axis 1 revealed a trade-off between leaf nutritional and structural investment, consistent with the LES. Physical defense traits were largely oriented along this axis. Axis 2 revealed a trade-off between investments in phenolic defenses versus other foliar defenses, which we term the leaf defense spectrum. Phylogenetic relationships and topo-edaphic variation largely did not explain trait co-variation. Our results suggest that some trade-offs among the growth and defense traits of outer-canopy trees may be captured by the LES, while others may occur along additional resource allocation dimensions.


Assuntos
Herbivoria , Folhas de Planta , Colorado , Panamá , Filogenia
11.
Nature ; 489(7415): 290-4, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22832582

RESUMO

The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve 'health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/estatística & dados numéricos , Espécies em Perigo de Extinção/estatística & dados numéricos , Árvores/fisiologia , Clima Tropical , Agricultura/estatística & dados numéricos , Animais , Coleta de Dados , Ecologia/estatística & dados numéricos , Poluição Ambiental/efeitos adversos , Poluição Ambiental/estatística & dados numéricos , Incêndios/estatística & dados numéricos , Agricultura Florestal/estatística & dados numéricos , Entrevistas como Assunto , Mineração/estatística & dados numéricos , Crescimento Demográfico , Chuva , Reprodutibilidade dos Testes , Pesquisadores , Inquéritos e Questionários , Temperatura
13.
Proc Natl Acad Sci U S A ; 112(11): 3433-8, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733902

RESUMO

Understanding the mechanisms enabling coevolution in complex mutualistic networks remains a central challenge in evolutionary biology. We show for the first time, to our knowledge, that a tropical plant species has the capacity to discriminate among floral visitors, investing in reproduction differentially across the pollinator community. After we standardized pollen quality in 223 aviary experiments, successful pollination of Heliconia tortuosa (measured as pollen tube abundance) occurred frequently when plants were visited by long-distance traplining hummingbird species with specialized bills (mean pollen tubes = 1.21 ± 0.12 SE) but was reduced 5.7 times when visited by straight-billed territorial birds (mean pollen tubes = 0.20 ± 0.074 SE) or insects. Our subsequent experiments revealed that plants use the nectar extraction capacity of tropical hummingbirds, a positive function of bill length, as a cue to turn on reproductively. Furthermore, we show that hummingbirds with long bills and high nectar extraction efficiency engaged in daily movements at broad spatial scales (∼1 km), but that territorial species moved only short distances (<100 m). Such pollinator recognition may therefore affect mate selection and maximize receipt of high-quality pollen from multiple parents. Although a diffuse pollinator network is implied, because all six species of hummingbirds carry pollen of H. tortuosa, only two species with specialized bills contribute meaningfully to its reproduction. We hypothesize that this pollinator filtering behavior constitutes a crucial mechanism facilitating coevolution in multispecies plant-pollinator networks. However, pollinator recognition also greatly reduces the number of realized pollinators, thereby rendering mutualistic networks more vulnerable to environmental change.


Assuntos
Aves/fisiologia , Heliconiaceae/fisiologia , Insetos/fisiologia , Polinização/fisiologia , Clima Tropical , Animais , Flores/fisiologia , Modelos Lineares , Modelos Biológicos , Néctar de Plantas , Tubo Polínico/fisiologia , Especificidade da Espécie
14.
Proc Natl Acad Sci U S A ; 112(26): 8019-24, 2015 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-26034267

RESUMO

Niche partitioning facilitates species coexistence in a world of limited resources, thereby enriching biodiversity. For decades, biologists have sought to understand how diverse assemblages of large mammalian herbivores (LMH) partition food resources. Several complementary mechanisms have been identified, including differential consumption of grasses versus nongrasses and spatiotemporal stratification in use of different parts of the same plant. However, the extent to which LMH partition food-plant species is largely unknown because comprehensive species-level identification is prohibitively difficult with traditional methods. We used DNA metabarcoding to quantify diet breadth, composition, and overlap for seven abundant LMH species (six wild, one domestic) in semiarid African savanna. These species ranged from almost-exclusive grazers to almost-exclusive browsers: Grass consumption inferred from mean sequence relative read abundance (RRA) ranged from >99% (plains zebra) to <1% (dik-dik). Grass RRA was highly correlated with isotopic estimates of % grass consumption, indicating that RRA conveys reliable quantitative information about consumption. Dietary overlap was greatest between species that were similar in body size and proportional grass consumption. Nonetheless, diet composition differed between all species-even pairs of grazers matched in size, digestive physiology, and location-and dietary similarity was sometimes greater across grazing and browsing guilds than within them. Such taxonomically fine-grained diet partitioning suggests that coarse trophic categorizations may generate misleading conclusions about competition and coexistence in LMH assemblages, and that LMH diversity may be more tightly linked to plant diversity than is currently recognized.


Assuntos
Animais Selvagens/genética , Código de Barras de DNA Taxonômico , Herbivoria , África , Animais , Animais Selvagens/fisiologia , Biodiversidade
15.
Biotropica ; 49(6): 803-810, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29398713

RESUMO

Geographic isolation is the first step in insect herbivore diet specialization. Such specialization is postulated to increase insect fitness, but may simultaneously reduce insect ability to colonize novel hosts. During the Paleocene-Eocene, plants from the order Zingiberales became isolated either in the Paleotropics or in the Neotropics. During the Cretaceous, rolled-leaf beetles diversified in the Neotropics concurrently with Neotropical Zingiberales. Using a community of Costa Rican rolled-leaf beetles and their Zingiberales host plants as study system, we explored if previous geographic isolation precludes insects to expand their diets to exotic hosts. We recorded interactions between rolled-leaf beetles and native Zingiberales by combining DNA barcodes and field records for 7450 beetles feeding on 3202 host plants. To determine phylogenetic patterns of diet expansions, we set 20 field plots including five exotic Zingiberales, recording beetles feeding on these exotic hosts. In the laboratory, using both native and exotic host plants, we reared a subset of insect species that had expanded their diets to the exotic plants. The original plant-herbivore community comprised 24 beetle species feeding on 35 native hosts, representing 103 plant-herbivore interactions. After exotic host plant introduction, 20% of the beetle species expanded their diets to exotic Zingiberales. Insects only established on exotic hosts that belong to the same plant family as their native hosts. Laboratory experiments show that beetles are able to complete development on these novel hosts. In conclusion, rolled-leaf beetles are pre-adapted to expand their diets to novel host plants even after millions of years of geographic isolation.

16.
Ecology ; 96(10): 2605-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649382

RESUMO

Considerable debate focuses on whether invasive species establish and become abundant by being functionally and phylogenetically distinct from native species, leading to a host of invasion-specific hypotheses of community assembly. Few studies, however, have quantitatively assessed whether similar patterns of phylogenetic and functional similarity explain local abundance of both native and introduced species, which would suggest similar assembly mechanisms regardless of origin. Using a chronosequence of invaded temperate forest stands, we tested whether the occurrence and abundance of both introduced and native species were predicted by phylogenetic relatedness, functional overlap, and key environmental characteristics including forest age. Environmental filtering against functionally and phylogenetically distinct species strongly dictated the occurrence and abundance of both introduced and native species, with slight modifications of these patterns according to forest age. Thus, once functional and evolutionary novelty were quantified, introduced status provided little information about species' presence or abundance, indicating largely similar sorting mechanisms for both native and introduced species.


Assuntos
Florestas , Espécies Introduzidas , Filogenia , Folhas de Planta/fisiologia , Plantas/classificação , Plantas/genética , Teorema de Bayes , Monitoramento Ambiental , Densidade Demográfica , Sementes , Especificidade da Espécie
17.
Ecol Lett ; 17(9): 1158-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24986005

RESUMO

Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8-16 years in eight successional rainforests. We tested whether successional changes in diversity-Δbiomass correlations reflect predictions of niche theories. Diversity-Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid-successional stands, high biodiversity was associated with greater mortality-driven biomass loss, i.e. negative selection effects, suggesting successional niche trade-offs and loss of fast-growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system.


Assuntos
Biodiversidade , Biomassa , Modelos Biológicos , Árvores/fisiologia , Filogenia , Dinâmica Populacional , Árvores/classificação , Árvores/genética , Clima Tropical
18.
New Phytol ; 204(3): 484-495, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25046797

RESUMO

In tropical and temperate trees, wood chemical traits are hypothesized to covary with species' life-history strategy along a 'wood economics spectrum' (WES), but evidence supporting these expected patterns remains scarce. Due to its role in nutrient storage, we hypothesize that wood nitrogen (N) concentration will covary along the WES, being higher in slow-growing species with high wood density (WD), and lower in fast-growing species with low WD. In order to test this hypothesis we quantified wood N concentrations in 59 Panamanian hardwood species, and used this dataset to examine ecological correlates and phylogenetic patterns of wood N. Wood N varied > 14-fold among species between 0.04 and 0.59%; closely related species were more similar in wood N than expected by chance. Wood N was positively correlated with WD, and negatively correlated with log-transformed relative growth rates, although these relationships were relatively weak. We found evidence for co-evolution between wood N and both WD and log-transformed mortality rates. Our study provides evidence that wood N covaries with tree life-history parameters, and that these patterns consistently co-evolve in tropical hardwoods. These results provide some support for the hypothesized WES, and suggest that wood is an increasingly important N pool through tropical forest succession.


Assuntos
Ecossistema , Nitrogênio/química , Árvores/genética , Árvores/metabolismo , Madeira/química , Análise Multivariada , Panamá , Filogenia , Especificidade da Espécie , Árvores/química , Clima Tropical
19.
Ecology ; 95(8): 2202-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25230471

RESUMO

Loss of native vegetation cover is thought to be a major driver of declines in pollination success worldwide. However, it is not well known whether reducing the fragmentation of remaining vegetation can ameliorate these negative effects. We tested the independent effects of composition vs. configuration on the reproductive success of a keystone tropical forest herb (Heliconia tortuosa). To do this we designed a large-scale mensurative experiment that independently varied connected forest-patch size (configuration) and surrounding amount of forest (composition). In each patch, we tested whether pollen tubes, fruit, and seed set were associated with these landscape variables. We also captured hummingbirds as an indication of pollinator availability in a subset of patches according to the same design. We found evidence for an effect of configuration on seed set of H. tortuosa, but not on other aspects of plant reproduction; proportion of seeds produced increased 40% across the gradient in patch size we observed (0.64 to > 1300 ha), independent of the amount of forest in the surrounding landscape at both local and landscape scales. We also found that the availability of pollinators was dependent upon forest configuration; hummingbird capture rates increased three and one-half times across the patch size gradient, independent of forest amount. Finally, pollinator availability was strongly positively correlated with seed set. We hypothesize that the effects of configuration on plant fitness that we observed are due to reduced pollen quality resulting from altered hummingbird availability and/or movement behavior. Our results suggest that prioritizing larger patches of tropical forest may be particularly important for conservation of this species.


Assuntos
Aves/fisiologia , Heliconiaceae/fisiologia , Polinização/fisiologia , Árvores , Clima Tropical , Animais , Costa Rica , Demografia , Ecossistema , Monitoramento Ambiental
20.
Mol Ecol ; 22(22): 5716-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24730040

RESUMO

In theory, conservation genetics predicts that forest fragmentation will reduce gene dispersal, but in practice, genetic and ecological processes are also dependent on other population characteristics. We used Bayesian genetic analyses to characterize parentage and propagule dispersal in Heliconia acuminata L. C. Richard (Heliconiaceae), a common Amazonian understory plant that is pollinated and dispersed by birds. We studied these processes in two continuous forest sites and three 1-ha fragments in Brazil's Biological Dynamics of Forest Fragments Project. These sites showed variation in the density of H. acuminata. Ten microsatellite markers were used to genotype flowering adults and seedling recruits and to quantify realized pollen and seed dispersal distances, immigration of propagules from outside populations, and reproductive dominance among parents. We tested whether gene dispersal is more dependent on fragmentation or density of reproductive plants. Low plant densities were associated with elevated immigration rates and greater propagule dispersal distances. Reproductive dominance among inside-plot parents was higher for low-density than for high-density populations. Elevated local flower and fruit availability is probably leading to spatially more proximal bird foraging and propagule dispersal in areas with high density of reproductive plants. Nevertheless, genetic diversity, inbreeding coefficients and fine-scale spatial genetic structure were similar across populations, despite differences in gene dispersal. This result may indicate that the opposing processes of longer dispersal events in low-density populations vs. higher diversity of contributing parents in high-density populations balance the resulting genetic outcomes and prevent genetic erosion in small populations and fragments.


Assuntos
Variação Genética , Genética Populacional , Heliconiaceae/genética , Teorema de Bayes , Brasil , DNA de Plantas/genética , Fluxo Gênico , Genótipo , Repetições de Microssatélites , Modelos Genéticos , Densidade Demográfica , Dispersão de Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA