Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 605(7911): 706-712, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508661

RESUMO

A globally invasive form of the mosquito Aedes aegypti specializes in biting humans, making it an efficient disease vector1. Host-seeking female mosquitoes strongly prefer human odour over the odour of animals2,3, but exactly how they distinguish between the two is not known. Vertebrate odours are complex blends of volatile chemicals with many shared components4-7, making discrimination an interesting sensory coding challenge. Here we show that human and animal odours evoke activity in distinct combinations of olfactory glomeruli within the Ae. aegypti antennal lobe. One glomerulus in particular is strongly activated by human odour but responds weakly, or not at all, to animal odour. This human-sensitive glomerulus is selectively tuned to the long-chain aldehydes decanal and undecanal, which we show are consistently enriched in human odour and which probably originate from unique human skin lipids. Using synthetic blends, we further demonstrate that signalling in the human-sensitive glomerulus significantly enhances long-range host-seeking behaviour in a wind tunnel, recapitulating preference for human over animal odours. Our research suggests that animal brains may distil complex odour stimuli of innate biological relevance into simple neural codes and reveals targets for the design of next-generation mosquito-control strategies.


Assuntos
Aedes , Encéfalo , Comportamento de Busca por Hospedeiro , Odorantes , Aedes/fisiologia , Animais , Encéfalo/fisiologia , Feminino , Humanos , Controle de Mosquitos , Mosquitos Vetores/fisiologia
2.
Curr Biol ; 30(18): 3570-3579.e6, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32707056

RESUMO

The majority of mosquito-borne illness is spread by a few mosquito species that have evolved to specialize in biting humans, yet the precise causes of this behavioral shift are poorly understood. We address this gap in the arboviral vector Aedes aegypti. We first collect and characterize the behavior of mosquitoes from 27 sites scattered across the species' ancestral range in sub-Saharan Africa, revealing previously unrecognized variation in preference for human versus animal odor. We then use modeling to show that over 80% of this variation can be predicted by two ecological factors-dry season intensity and human population density. Finally, we integrate this information with whole-genome sequence data from 375 individual mosquitoes to identify a single underlying ancestry component linked to human preference. Genetic changes associated with human specialist ancestry were concentrated in a few chromosomal regions. Our findings suggest that human-biting in this important disease vector originally evolved as a by-product of breeding in human-stored water in areas where doing so provided the only means to survive the long, hot dry season. Our model also predicts that the rapid urbanization currently taking place in Africa will drive further mosquito evolution, causing a shift toward human-biting in many large cities by 2050.


Assuntos
Aedes/crescimento & desenvolvimento , Clima , Genoma de Inseto , Mordeduras e Picadas de Insetos/epidemiologia , Proteínas de Insetos/genética , Mosquitos Vetores/crescimento & desenvolvimento , Urbanização , Aedes/genética , África/epidemiologia , Animais , Cidades , Feminino , Genética Populacional , Humanos , Masculino , Mosquitos Vetores/genética , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA