Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(1-2): 391-403.e19, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30528433

RESUMO

Proteins and RNA functionally and physically intersect in multiple biological processes, however, currently no universal method is available to purify protein-RNA complexes. Here, we introduce XRNAX, a method for the generic purification of protein-crosslinked RNA, and demonstrate its versatility to study the composition and dynamics of protein-RNA interactions by various transcriptomic and proteomic approaches. We show that XRNAX captures all RNA biotypes and use this to characterize the sub-proteomes that interact with coding and non-coding RNAs (ncRNAs) and to identify hundreds of protein-RNA interfaces. Exploiting the quantitative nature of XRNAX, we observe drastic remodeling of the RNA-bound proteome during arsenite-induced stress, distinct from autophagy-related changes in the total proteome. In addition, we combine XRNAX with crosslinking immunoprecipitation sequencing (CLIP-seq) to validate the interaction of ncRNA with lamin B1 and EXOSC2. Thus, XRNAX is a resourceful approach to study structural and compositional aspects of protein-RNA interactions to address fundamental questions in RNA-biology.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Ligação a RNA/isolamento & purificação , RNA/isolamento & purificação , Sítios de Ligação , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Humanos , Imunoprecipitação/métodos , Lamina Tipo B/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas/isolamento & purificação , Proteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , RNA/genética , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
2.
Immunity ; 52(2): 404-416.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32049054

RESUMO

Mast cells are rare tissue-resident cells of importance to human allergies. To understand the structural basis of principle mast cell functions, we analyzed the proteome of primary human and mouse mast cells by quantitative mass spectrometry. We identified a mast-cell-specific proteome signature, indicative of a unique lineage, only distantly related to other immune cell types, including innate immune cells. Proteome comparison between human and mouse suggested evolutionary conservation of core mast cell functions. In addition to specific proteases and proteins associated with degranulation and proteoglycan biosynthesis, mast cells expressed proteins potentially involved in interactions with neurons and neurotransmitter metabolism, including cell adhesion molecules, ion channels, and G protein coupled receptors. Toward targeted cell ablation in severe allergic diseases, we used MRGPRX2 for mast cell depletion in human skin biopsies. These proteome analyses suggest a unique role of mast cells in the immune system, probably intertwined with the nervous system.


Assuntos
Mastócitos/citologia , Mastócitos/imunologia , Animais , Biomarcadores/metabolismo , Degranulação Celular , Linhagem da Célula , Células Cultivadas , Tecido Conjuntivo/imunologia , Humanos , Imunoterapia , Mastócitos/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Neuroimunomodulação , Proteoglicanas/biossíntese , Proteoma , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/imunologia , Receptores de Neuropeptídeos/metabolismo , Pele/imunologia
3.
Genome Res ; 34(6): 952-966, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38986579

RESUMO

DEAD box (DDX) RNA helicases are a large family of ATPases, many of which have unknown functions. There is emerging evidence that besides their role in RNA biology, DDX proteins may stimulate protein kinases. To investigate if protein kinase-DDX interaction is a more widespread phenomenon, we conducted three orthogonal large-scale screens, including proteomics analysis with 32 RNA helicases, protein array profiling, and kinome-wide in vitro kinase assays. We retrieved Ser/Thr protein kinases as prominent interactors of RNA helicases and report hundreds of binary interactions. We identified members of ten protein kinase families, which bind to, and are stimulated by, DDX proteins, including CDK, CK1, CK2, DYRK, MARK, NEK, PRKC, SRPK, STE7/MAP2K, and STE20/PAK family members. We identified MARK1 in all screens and validated that DDX proteins accelerate the MARK1 catalytic rate. These findings indicate pervasive interactions between protein kinases and DEAD box RNA helicases, and provide a rich resource to explore their regulatory relationships.


Assuntos
RNA Helicases DEAD-box , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Ligação Proteica , Proteômica/métodos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
4.
Cell ; 149(6): 1393-406, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22658674

RESUMO

RNA-binding proteins (RBPs) determine RNA fate from synthesis to decay. Employing two complementary protocols for covalent UV crosslinking of RBPs to RNA, we describe a systematic, unbiased, and comprehensive approach, termed "interactome capture," to define the mRNA interactome of proliferating human HeLa cells. We identify 860 proteins that qualify as RBPs by biochemical and statistical criteria, adding more than 300 RBPs to those previously known and shedding light on RBPs in disease, RNA-binding enzymes of intermediary metabolism, RNA-binding kinases, and RNA-binding architectures. Unexpectedly, we find that many proteins of the HeLa mRNA interactome are highly intrinsically disordered and enriched in short repetitive amino acid motifs. Interactome capture is broadly applicable to study mRNA interactome composition and dynamics in varied biological settings.


Assuntos
Proteômica/métodos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Animais , Células HeLa , Humanos , Proteínas de Ligação a RNA/metabolismo
5.
Mol Cell ; 73(3): 474-489.e5, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595434

RESUMO

Local translation is rapidly regulated by extrinsic signals during neural wiring, but its control mechanisms remain elusive. Here we show that the extracellular cue Sema3A induces an initial burst in local translation that precisely controls phosphorylation of the translation initiation factor eIF2α via the unfolded protein response (UPR) kinase PERK. Strikingly, in contrast to canonical UPR signaling, Sema3A-induced eIF2α phosphorylation bypasses global translational repression and underlies an increase in local translation through differential activity of eIF2B mediated by protein phosphatase 1. Ultrasensitive proteomics analysis of axons reveals 75 proteins translationally controlled via the Sema3A-p-eIF2α pathway. These include proteostasis- and actin cytoskeleton-related proteins but not canonical stress markers. Finally, we show that PERK signaling is needed for directional axon migration and visual pathway development in vivo. Thus, our findings reveal a noncanonical eIF2 signaling pathway that controls selective changes in axon translation and is required for neural wiring.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Neurogênese , Células Ganglionares da Retina/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Axônios/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/genética , Feminino , Masculino , Neurogênese/efeitos dos fármacos , Fosforilação , Mapas de Interação de Proteínas , Proteômica/métodos , Células Ganglionares da Retina/efeitos dos fármacos , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
6.
Mol Cell Proteomics ; 23(1): 100692, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081362

RESUMO

A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.


Assuntos
Comunicação Celular , Secretoma , Animais , Mamíferos/metabolismo , Proteoma/metabolismo , Proteômica/métodos
7.
Nucleic Acids Res ; 52(10): 5698-5719, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38587186

RESUMO

AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.


Assuntos
Cromatina , Reparo do DNA , Proteínas de Ligação a DNA , Imunidade , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Recombinação Homóloga/genética , Imunidade/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/imunologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transativadores , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Nat Immunol ; 14(8): 821-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23812096

RESUMO

Monocytes, macrophages and dendritic cells (DCs) are developmentally related regulators of the immune system that share the monocyte-macrophage DC progenitor (MDP) as a common precursor. Unlike differentiation into DCs, the distal pathways for differentiation into monocytes and monocyte-derived macrophages are not fully elucidated. We have now demonstrated the existence of a clonogenic, monocyte- and macrophage-restricted progenitor cell derived from the MDP. This progenitor was a Ly6C(+) proliferating cell present in the bone marrow and spleen that generated the major monocyte subsets and macrophages, but not DCs or neutrophils. By in-depth quantitative proteomics, we characterized changes in the proteome during monocyte differentiation, which provided insight into the molecular principles of developing monocytes, such as their functional maturation. Thus, we found that monocytes and macrophages were renewed independently of DCs from a committed progenitor.


Assuntos
Medula Óssea/imunologia , Células Precursoras de Monócitos e Macrófagos/imunologia , Proteômica/métodos , Baço/imunologia , Animais , Diferenciação Celular/imunologia , Cromatografia Líquida , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Monócitos e Macrófagos/citologia , Organismos Livres de Patógenos Específicos , Espectrometria de Massas por Ionização por Electrospray , Baço/citologia , Espectrometria de Massas em Tandem
9.
Nucleic Acids Res ; 51(2): 687-711, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629267

RESUMO

The DNA damage response (DDR) is essential to maintain genome stability, and its deregulation predisposes to carcinogenesis while encompassing attractive targets for cancer therapy. Chromatin governs the DDR via the concerted interplay among different layers, including DNA, histone post-translational modifications (hPTMs) and chromatin-associated proteins. Here, we employ multi-layered proteomics to characterize chromatin-mediated functional interactions of repair proteins, signatures of hPTMs and the DNA-bound proteome during DNA double-strand break (DSB) repair at high temporal resolution. Our data illuminate the dynamics of known and novel DDR-associated factors both at chromatin and at DSBs. We functionally attribute novel chromatin-associated proteins to repair by non-homologous end-joining (NHEJ), homologous recombination (HR) and DSB repair pathway choice. We reveal histone reader ATAD2, microtubule organizer TPX2 and histone methyltransferase G9A as regulators of HR and involved in poly-ADP-ribose polymerase-inhibitor sensitivity. Furthermore, we distinguish hPTMs that are globally induced by DNA damage from those specifically acquired at sites flanking DSBs (γH2AX foci-specific) and profiled their dynamics during the DDR. Integration of complementary chromatin layers implicates G9A-mediated monomethylation of H3K56 in DSBs repair via HR. Our data provide a dynamic chromatin-centered view of the DDR that can be further mined to identify novel mechanistic links and cell vulnerabilities in DSB repair.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/metabolismo , Proteômica , Reparo do DNA , Reparo do DNA por Junção de Extremidades , DNA , Reparo de DNA por Recombinação
10.
Nucleic Acids Res ; 51(14): e79, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395449

RESUMO

Post-transcriptional gene regulation is accomplished by the interplay of the transcriptome with RNA-binding proteins, which occurs in a dynamic manner in response to altered cellular conditions. Recording the combined occupancy of all proteins binding to the transcriptome offers the opportunity to interrogate if a particular treatment leads to any interaction changes, pointing to sites in RNA that undergo post-transcriptional regulation. Here, we establish a method to monitor protein occupancy in a transcriptome-wide fashion by RNA sequencing. To this end, peptide-enhanced pull-down for RNA sequencing (or PEPseq) uses metabolic RNA labelling with 4-thiouridine (4SU) for light-induced protein-RNA crosslinking, and N-hydroxysuccinimide (NHS) chemistry to isolate protein-crosslinked RNA fragments across all long RNA biotypes. We use PEPseq to investigate changes in protein occupancy during the onset of arsenite-induced translational stress in human cells and reveal an increase of protein interactions in the coding region of a distinct set of mRNAs, including mRNAs coding for the majority of cytosolic ribosomal proteins. We use quantitative proteomics to demonstrate that translation of these mRNAs remains repressed during the initial hours of recovery after arsenite stress. Thus, we present PEPseq as a discovery platform for the unbiased investigation of post-transcriptional regulation.


Assuntos
Biossíntese de Proteínas , Transcriptoma , Humanos , Arsenitos/toxicidade , Proteômica , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Int J Cancer ; 154(12): 2106-2120, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38353495

RESUMO

Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.3-G34W). The mechanisms by which these mutations promote malignancy are not completely understood. Here we show that cells expressing H3.3-G34W exhibit DNA double-strand breaks (DSBs) repair defects and increased cellular sensitivity to ionizing radiation (IR). Mechanistically, H3.3-G34W can be deposited to damaged chromatin, but in contrast to wild-type H3.3, does not interact with non-homologous end-joining (NHEJ) key effectors KU70/80 and XRCC4 leading to NHEJ deficiency. Together with defective cell cycle checkpoints reported previously, this DNA repair deficiency in H3.3-G34W cells led to accumulation of micronuclei and cytosolic DNA following IR, which subsequently led to activation of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, thereby inducing release of immune-stimulatory cytokines. These findings suggest a potential for radiotherapy for tumors expressing H3.3-G34W, which can be further improved by combination with STING agonists to induce immune-mediated therapeutic efficacy.


Assuntos
Distúrbios no Reparo do DNA , Histonas , Criança , Humanos , Histonas/genética , Nucleotidiltransferases/genética , Imunidade , DNA
12.
Clin Proteomics ; 21(1): 49, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969985

RESUMO

Understanding the interplay of the proteome and the metabolome helps to understand cellular regulation and response. To enable robust inferences from such multi-omics analyses, we introduced and evaluated a workflow for combined proteome and metabolome analysis starting from a single sample. Specifically, we integrated established and individually optimized protocols for metabolomic and proteomic profiling (EtOH/MTBE and autoSP3, respectively) into a unified workflow (termed MTBE-SP3), and took advantage of the fact that the protein residue of the metabolomic sample can be used as a direct input for proteome analysis. We particularly evaluated the performance of proteome analysis in MTBE-SP3, and demonstrated equivalence of proteome profiles irrespective of prior metabolite extraction. In addition, MTBE-SP3 combines the advantages of EtOH/MTBE and autoSP3 for semi-automated metabolite extraction and fully automated proteome sample preparation, respectively, thus advancing standardization and scalability for large-scale studies. We showed that MTBE-SP3 can be applied to various biological matrices (FFPE tissue, fresh-frozen tissue, plasma, serum and cells) to enable implementation in a variety of clinical settings. To demonstrate applicability, we applied MTBE-SP3 and autoSP3 to a lung adenocarcinoma cohort showing consistent proteomic alterations between tumour and non-tumour adjacent tissue independent of the method used. Integration with metabolomic data obtained from the same samples revealed mitochondrial dysfunction in tumour tissue through deregulation of OGDH, SDH family enzymes and PKM. In summary, MTBE-SP3 enables the facile and reliable parallel measurement of proteins and metabolites obtained from the same sample, benefiting from reduced sample variation and input amount. This workflow is particularly applicable for studies with limited sample availability and offers the potential to enhance the integration of metabolomic and proteomic datasets.

13.
Blood ; 140(24): 2594-2610, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857899

RESUMO

BCL-2 inhibition has been shown to be effective in acute myeloid leukemia (AML) in combination with hypomethylating agents or low-dose cytarabine. However, resistance and relapse represent major clinical challenges. Therefore, there is an unmet need to overcome resistance to current venetoclax-based strategies. We performed high-throughput drug screening to identify effective combination partners for venetoclax in AML. Overall, 64 antileukemic drugs were screened in 31 primary high-risk AML samples with or without venetoclax. Gilteritinib exhibited the highest synergy with venetoclax in FLT3 wild-type AML. The combination of gilteritinib and venetoclax increased apoptosis, reduced viability, and was active in venetoclax-azacitidine-resistant cell lines and primary patient samples. Proteomics revealed increased FLT3 wild-type signaling in specimens with low in vitro response to the currently used venetoclax-azacitidine combination. Mechanistically, venetoclax with gilteritinib decreased phosphorylation of ERK and GSK3B via combined AXL and FLT3 inhibition with subsequent suppression of the antiapoptotic protein MCL-1. MCL-1 downregulation was associated with increased MCL-1 phosphorylation of serine 159, decreased phosphorylation of threonine 161, and proteasomal degradation. Gilteritinib and venetoclax were active in an FLT3 wild-type AML patient-derived xenograft model with TP53 mutation and reduced leukemic burden in 4 patients with FLT3 wild-type AML receiving venetoclax-gilteritinib off label after developing refractory disease under venetoclax-azacitidine. In summary, our results suggest that combined inhibition of FLT3/AXL potentiates venetoclax response in FLT3 wild-type AML by inducing MCL-1 degradation. Therefore, the venetoclax-gilteritinib combination merits testing as a potentially active regimen in patients with high-risk FLT3 wild-type AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Azacitidina , Tirosina Quinase 3 Semelhante a fms/genética
14.
Mol Psychiatry ; 28(5): 2122-2135, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36782060

RESUMO

MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Haploinsuficiência/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fenótipo , Fatores de Transcrição/genética
15.
Nature ; 563(7730): 265-269, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30401838

RESUMO

Inactivation of ARID1A and other components of the nuclear SWI/SNF protein complex occurs at very high frequencies in a variety of human malignancies, suggesting a widespread role for the SWI/SNF complex in tumour suppression1. However, the underlying mechanisms remain poorly understood. Here we show that ARID1A-containing SWI/SNF complex (ARID1A-SWI/SNF) operates as an inhibitor of the pro-oncogenic transcriptional coactivators YAP and TAZ2. Using a combination of gain- and loss-of-function approaches in several cellular contexts, we show that YAP/TAZ are necessary to induce the effects of the inactivation of the SWI/SNF complex, such as cell proliferation, acquisition of stem cell-like traits and liver tumorigenesis. We found that YAP/TAZ form a complex with SWI/SNF; this interaction is mediated by ARID1A and is alternative to the association of YAP/TAZ with the DNA-binding platform TEAD. Cellular mechanotransduction regulates the association between ARID1A-SWI/SNF and YAP/TAZ. The inhibitory interaction of ARID1A-SWI/SNF and YAP/TAZ is predominant in cells that experience low mechanical signalling, in which loss of ARID1A rescues the association between YAP/TAZ and TEAD. At high mechanical stress, nuclear F-actin binds to ARID1A-SWI/SNF, thereby preventing the formation of the ARID1A-SWI/SNF-YAP/TAZ complex, in favour of an association between TEAD and YAP/TAZ. We propose that a dual requirement must be met to fully enable the YAP/TAZ responses: promotion of nuclear accumulation of YAP/TAZ, for example, by loss of Hippo signalling, and inhibition of ARID1A-SWI/SNF, which can occur either through genetic inactivation or because of increased cell mechanics. This study offers a molecular framework in which mechanical signals that emerge at the tissue level together with genetic lesions activate YAP/TAZ to induce cell plasticity and tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mecanotransdução Celular , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Proteínas de Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Via de Sinalização Hippo , Humanos , Masculino , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Mecânico , Fatores de Transcrição de Domínio TEA , Transativadores , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt
16.
Nature ; 560(7718): E28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069041

RESUMO

In Extended Data Fig. 1a of this Letter, the flow cytometry plot depicting the surface phenotype of AML sample DD08 was a duplicate of the plot for AML sample DD06. Supplementary Data 4 has been added to the Supplementary Information of the original Letter to clarify the proteome data acquisition and presentation. The original Letter has been corrected online.

17.
Mol Cell ; 64(3): 624-635, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773674

RESUMO

Maintenance of pluripotency is regulated by a network of transcription factors coordinated by Oct4, Sox2, and Nanog (OSN), yet a systematic investigation of the composition and dynamics of the OSN protein network specifically on chromatin is still missing. Here we have developed a method combining ChIP with selective isolation of chromatin-associated proteins (SICAP) followed by mass spectrometry to identify chromatin-bound partners of a protein of interest. ChIP-SICAP in mouse embryonic stem cells (ESCs) identified over 400 proteins associating with OSN, including several whose interaction depends on the pluripotent state. Trim24, a previously unrecognized protein in the network, converges with OSN on multiple enhancers and suppresses the expression of developmental genes while activating cell cycle genes. Consistently, Trim24 significantly improved efficiency of cellular reprogramming, demonstrating its direct functionality in establishing pluripotency. Collectively, ChIP-SICAP provides a powerful tool to decode chromatin protein composition, further enhanced by its integrative capacity to perform ChIP-seq.


Assuntos
Cromatina/química , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Homeobox Nanog/genética , Proteínas Nucleares/genética , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Diferenciação Celular , Reprogramação Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcação por Isótopo , Espectrometria de Massas/métodos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteína Homeobox Nanog/metabolismo , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Ligação Proteica , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
18.
Mol Cell ; 63(4): 696-710, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27453046

RESUMO

Mammalian cells harbor more than a thousand RNA-binding proteins (RBPs), with half of these employing unknown modes of RNA binding. We developed RBDmap to determine the RNA-binding sites of native RBPs on a proteome-wide scale. We identified 1,174 binding sites within 529 HeLa cell RBPs, discovering numerous RNA-binding domains (RBDs). Catalytic centers or protein-protein interaction domains are in close relationship with RNA-binding sites, invoking possible effector roles of RNA in the control of protein function. Nearly half of the RNA-binding sites map to intrinsically disordered regions, uncovering unstructured domains as prevalent partners in protein-RNA interactions. RNA-binding sites represent hot spots for defined posttranslational modifications such as lysine acetylation and tyrosine phosphorylation, suggesting metabolic and signal-dependent regulation of RBP function. RBDs display a high degree of evolutionary conservation and incidence of Mendelian mutations, suggestive of important functional roles. RBDmap thus yields profound insights into native protein-RNA interactions in living cells.


Assuntos
Proteômica/métodos , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Acetilação , Biologia Computacional , Bases de Dados de Proteínas , Evolução Molecular , Células HeLa , Humanos , Metilação , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Relação Estrutura-Atividade
19.
J Med Virol ; 95(12): e29280, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054507

RESUMO

Cycling hypoxia (cycH) is a prevalent form of tumor hypoxia that is characterized by exposure of tumor cells to recurrent phases of hypoxia and reoxygenation. CycH has been associated with a particularly aggressive cellular phenotype of tumor cells and increased therapy resistance. By performing comparative analyses under normoxia, physoxia, chronic hypoxia, and cycH, we here uncover distinct effects of cycH on the phenotype of human papillomavirus (HPV)-positive cervical cancer cells. We show that-other than under chronic hypoxia-viral E6/E7 oncogene expression is largely maintained under cycH as is the E6/E7-dependent regulation of p53 and retinoblastoma protein. Further, cycH enables HPV-positive cancer cells to evade prosenescent chemotherapy, similar to chronic hypoxia. Moreover, cells under cycH exhibit a particularly pronounced resistance to the proapoptotic effects of Cisplatin. Quantitative proteome analyses reveal that cycH induces a unique proteomic signature in cervical cancer cells, which includes a significant downregulation of luminal lysosomal proteins. These encompass the potentially proapoptotic cathepsins B and cathepsin L, which, however, appear not to affect the response to Cisplatin under any of the O2 conditions tested. Rather, we show that the proapoptotic Caspase 8/BH3-interacting domain death agonist (BID) cascade plays a pivotal role for the efficiency of Cisplatin-induced apoptosis in HPV-positive cancer cells under all investigated O2 conditions. In addition, we provide evidence that BID activation by Cisplatin is impaired under cycH, which could contribute to the high resistance to the proapoptotic effects of Cisplatin. Collectively, this study provides the first insights into the profound phenotypic alterations induced by cycH in HPV-positive cancer cells, with implications for their therapeutic susceptibility.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Proteômica , Proteínas Repressoras/genética , Hipóxia , Proteínas E7 de Papillomavirus/genética
20.
J Med Virol ; 95(6): e28850, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37322807

RESUMO

Infection with certain cutaneous human papillomaviruses (HPV), in conjunction with chronic ultraviolet (UV) exposure, are the major cofactors of non-melanoma skin cancer (NMSC), the most frequent cancer type worldwide. Cutaneous squamous cell carcinomas (SCCs) as well as tumors in general represent three-dimensional entities determined by both temporal and spatial constraints. Whole tissue proteomics is a straightforward approach to understand tumorigenesis in better detail, but studies focusing on different progression states toward a dedifferentiated SCC phenotype on a spatial level are rare. Here, we applied an innovative proteomic workflow on formalin-fixed, paraffin-embedded (FFPE) epithelial tumors derived from the preclinical animal model Mastomys coucha. This rodent is naturally infected with its genuine cutaneous papillomavirus and closely mimics skin carcinogenesis in the context of cutaneous HPV infections in humans. We deciphered cellular networks by comparing diverse epithelial tissues with respect to their differentiation level and infection status. Our study reveals novel regulatory proteins and pathways associated with virus-induced tumor initiation and progression of SCCs. This approach provides the basis to better comprehend the multistep process of skin carcinogenesis.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias Cutâneas , Animais , Humanos , Proteômica , Papillomaviridae/genética , Murinae , Queratinócitos , Carcinogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA