Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 55(1): 115-128.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021053

RESUMO

The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-ß-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-ß-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.


Assuntos
Centro Germinativo/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Estruturas Linfoides Terciárias/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Inativação Gênica , Genótipo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fator de Crescimento Transformador beta/genética
2.
Blood Cancer Discov ; 3(6): 536-553, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053528

RESUMO

Myeloblast expansion is a hallmark of disease progression and comprises CD34+ hematopoietic stem and progenitor cells (HSPC). How this compartment evolves during disease progression in chronic myeloid neoplasms is unknown. Using single-cell RNA sequencing and high-parameter flow cytometry, we show that chronic myelomonocytic leukemia (CMML) CD34+ HSPC can be classified into three differentiation trajectories: monocytic, megakaryocyte-erythroid progenitor (MEP), and normal-like. Hallmarks of monocytic-biased trajectory were enrichment of CD120b+ inflammatory granulocyte-macrophage progenitor (GMP)-like cells, activated cytokine receptor signaling, phenotypic hematopoietic stem cell (HSC) depletion, and adverse outcomes. Cytokine receptor diversity was generally an adverse feature and elevated in CD120b+ GMPs. Hypomethylating agents decreased monocytic-biased cells in CMML patients. Given the enrichment of RAS pathway mutations in monocytic-biased cells, NRAS-competitive transplants and LPS-treated xenograft models recapitulated monocytic-biased CMML, suggesting that hematopoietic stress precipitates the monocytic-biased state. Deconvolution of HSPC compartments in other myeloid neoplasms and identifying therapeutic strategies to mitigate the monocytic-biased differentiation trajectory should be explored. SIGNIFICANCE: Our findings establish that multiple differentiation states underlie CMML disease progression. These states are negatively augmented by inflammation and positively affected by hypomethylating agents. Furthermore, we identify HSC depletion and expansion of GMP-like cells with increased cytokine receptor diversity as a feature of myeloblast expansion in inflammatory chronic myeloid neoplasms. This article is highlighted in the In This Issue feature, p. 476.


Assuntos
Leucemia Mielomonocítica Crônica , Leucemia Mielomonocítica Juvenil , Humanos , Leucemia Mielomonocítica Crônica/genética , Células-Tronco Hematopoéticas , Antígenos CD34/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Progressão da Doença , Receptores de Citocinas/metabolismo
3.
Methods Mol Biol ; 2194: 239-253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926370

RESUMO

Multiparametric flow cytometry is a technique utilized in translational experiments that utilizes fluorescently tagged antibodies and functional fluorescent dyes to measure proteins on the surface or in the cytoplasm of cells and to measure processes occurring within cells themselves. These fluorescent molecules, or fluorophores, can be tagged to antibodies to measure specific biological molecules such as proteins inside or on the surface of cells. Small organic compounds such as the nucleic acid binding dye propidium iodide (PI) can permeate compromised cell membranes when cells are no longer viable or used to measure DNA content of cycling cells. Successful completion of flow cytometry experiments requires expertise in both the preparation of the samples, acquisition of the samples on instruments, and analyses of the results. This chapter describes the principles needed to conduct a successful multiparameter flow cytometry experiment needed for drug development with references to well established internet resources that are useful to those less experienced in the field. In addition, we provide a brief introduction to data analysis including complex analysis of 10+ parameters simultaneously. These high-dimensional datasets require novel methods for analysis due to the volume of data collected, which are also introduced in this chapter.


Assuntos
Biologia Computacional/métodos , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Animais , Anticorpos , Citometria de Fluxo/instrumentação , Humanos , Fenótipo , Propídio/química , Software , Coloração e Rotulagem/métodos
4.
Sci Rep ; 9(1): 606, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679640

RESUMO

GSK3α has been identified as a new target in the treatment of acute myeloid leukemia (AML). However, most GSK3 inhibitors lack specificity for GSK3α over GSK3ß and other kinases. We have previously shown in lung cancer cells that GSK3α and to a lesser extent GSK3ß are inhibited by the advanced clinical candidate tivantinib (ARQ197), which was designed as a MET inhibitor. Thus, we hypothesized that tivantinib would be an effective therapy for the treatment of AML. Here, we show that tivantinib has potent anticancer activity across several AML cell lines and primary patient cells. Tivantinib strongly induced apoptosis, differentiation and G2/M cell cycle arrest and caused less undesirable stabilization of ß-catenin compared to the pan-GSK3 inhibitor LiCl. Subsequent drug combination studies identified the BCL-2 inhibitor ABT-199 to synergize with tivantinib while cytarabine combination with tivantinib was antagonistic. Interestingly, the addition of ABT-199 to tivantinib completely abrogated tivantinib induced ß-catenin stabilization. Tivantinib alone, or in combination with ABT-199, downregulated anti-apoptotic MCL-1 and BCL-XL levels, which likely contribute to the observed synergy. Importantly, tivantinib as single agent or in combination with ABT-199 significantly inhibited the colony forming capacity of primary patient AML bone marrow mononuclear cells. In summary, tivantinib is a novel GSK3α/ß inhibitor that potently kills AML cells and tivantinib single agent or combination therapy with ABT-199 may represent attractive new therapeutic opportunities for AML.


Assuntos
Apoptose/efeitos dos fármacos , Reposicionamento de Medicamentos , Pirrolidinonas/farmacologia , Quinolinas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Pirrolidinonas/uso terapêutico , Quinolinas/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
5.
Mol Cancer Ther ; 15(7): 1669-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27196765

RESUMO

The DNA damage response (DDR) involves a complex network of signaling events mediated by modular protein domains such as the BRCA1 C-terminal (BRCT) domain. Thus, proteins that interact with BRCT domains and are a part of the DDR constitute potential targets for sensitization to DNA-damaging chemotherapy agents. We performed a pharmacologic screen to evaluate 17 kinases, identified in a BRCT-mediated interaction network as targets to enhance platinum-based chemotherapy in lung cancer. Inhibition of mitotic kinase WEE1 was found to have the most effective response in combination with platinum compounds in lung cancer cell lines. In the BRCT-mediated interaction network, WEE1 was found in complex with PAXIP1, a protein containing six BRCT domains involved in transcription and in the cellular response to DNA damage. We show that PAXIP1 BRCT domains regulate WEE1-mediated phosphorylation of CDK1. Furthermore, ectopic expression of PAXIP1 promotes enhanced caspase-3-mediated apoptosis in cells treated with WEE1 inhibitor AZD1775 (formerly, MK-1775) and cisplatin compared with cells treated with AZD1775 alone. Cell lines and patient-derived xenograft models expressing both PAXIP1 and WEE1 exhibited synergistic effects of AZD1775 and cisplatin. In summary, PAXIP1 is involved in sensitizing lung cancer cells to the WEE1 inhibitor AZD1775 in combination with platinum-based treatment. We propose that WEE1 and PAXIP1 levels may be used as mechanism-based biomarkers of response when WEE1 inhibitor AZD1775 is combined with DNA-damaging agents. Mol Cancer Ther; 15(7); 1669-81. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Platina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Apoptose , Proteína Quinase CDC2 , Proteínas de Transporte/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/metabolismo , Mitose/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA