Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cladistics ; 40(1): 34-63, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919831

RESUMO

Chalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution. We combined 1007 exons obtained with Anchored Hybrid Enrichment with 1048 ultra-conserved elements (UCEs) for 433 taxa including all extant families, >95% of all subfamilies, and 356 genera chosen to represent the vast diversity of the superfamily. Going back and forth between the molecular results and our collective knowledge of morphology and biology, we detected bias in the analyses that was driven by the saturation of nucleotide data. Our final results are based on a concatenated analysis of the least saturated exons and UCE datasets (2054 loci, 284 106 sites). Our analyses support an expected sister relationship with Mymarommatoidea. Seven previously recognized families were not monophyletic, so support for a new classification is discussed. Natural history in some cases would appear to be more informative than morphology, as illustrated by the elucidation of a clade of plant gall associates and a clade of taxa with planidial first-instar larvae. The phylogeny suggests a transition from smaller soft-bodied wasps to larger and more heavily sclerotized wasps, with egg parasitism as potentially ancestral for the entire superfamily. Deep divergences in Chalcidoidea coincide with an increase in insect families in the fossil record, and an early shift to phytophagy corresponds with the beginning of the "Angiosperm Terrestrial Revolution". Our dating analyses suggest a middle Jurassic origin of 174 Ma (167.3-180.5 Ma) and a crown age of 162.2 Ma (153.9-169.8 Ma) for Chalcidoidea. During the Cretaceous, Chalcidoidea may have undergone a rapid radiation in southern Gondwana with subsequent dispersals to the Northern Hemisphere. This scenario is discussed with regard to knowledge about the host taxa of chalcid wasps, their fossil record and Earth's palaeogeographic history.


Assuntos
Parasitos , Vespas , Animais , Vespas/genética , Filogenia , Evolução Biológica
2.
Proc Biol Sci ; 289(1967): 20212086, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078362

RESUMO

One key event in insect evolution was the development of mandibles with two joints, which allowed powerful biting but restricted their movement to a single degree of freedom. These mandibles define the Dicondylia, which constitute over 99% of all extant insect species. It was common doctrine that the dicondylic articulation of chewing mandibles remained unaltered for more than 400 million years. We report highly modified mandibles overcoming the restrictions of a single degree of freedom and hypothesize their major role in insect diversification. These mandibles are defining features of parasitoid chalcid wasps, one of the most species-rich lineages of insects. The shift from powerful chewing to precise cutting likely facilitated adaptations to parasitize hosts hidden in hard substrates, which pose challenges to the emerging wasps. We reveal a crucial step in insect evolution and highlight the importance of comprehensive studies even of putatively well-known systems.


Assuntos
Vespas , Adaptação Fisiológica , Animais , Interações Hospedeiro-Parasita , Filogenia
3.
Mol Phylogenet Evol ; 120: 286-296, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247847

RESUMO

Chalcidoidea are a megadiverse group of mostly parasitoid wasps of major ecological and economical importance that are omnipresent in almost all extant terrestrial habitats. The timing and pattern of chalcidoid diversification is so far poorly understood and has left many important questions on the evolutionary history of Chalcidoidea unanswered. In this study, we infer the early divergence events within Chalcidoidea and address the question of whether or not ancestral chalcidoids were small egg parasitoids. We also trace the evolution of some key traits: jumping ability, development of enlarged hind femora, and associations with figs. Our phylogenetic inference is based on the analysis of 3,239 single-copy genes across 48 chalcidoid wasps and outgroups representatives. We applied an innovative a posteriori evaluation approach to molecular clock-dating based on nine carefully validated fossils, resulting in the first molecular clock-based estimation of deep Chalcidoidea divergence times. Our results suggest a late Jurassic origin of Chalcidoidea, with a first divergence of morphologically and biologically distinct groups in the early to mid Cretaceous, between 129 and 81 million years ago (mya). Diversification of most extant lineages happened rapidly after the Cretaceous in the early Paleogene, between 75 and 53 mya. The inferred Chalcidoidea tree suggests a transition from ancestral minute egg parasitoids to larger-bodied parasitoids of other host stages during the early history of chalcidoid evolution. The ability to jump evolved independently at least three times, namely in Eupelmidae, Encyrtidae, and Tanaostigmatidae. Furthermore, the large-bodied strongly sclerotized species with enlarged hind femora in Chalcididae and Leucospidae are not closely related. Finally, the close association of some chalcidoid wasps with figs, either as pollinators, or as inquilines/gallers or as parasitoids, likely evolved at least twice independently: in the Eocene, giving rise to fig pollinators, and in the Oligocene or Miocene, resulting in non-pollinating fig-wasps, including gallers and parasitoids. The origins of very speciose lineages (e.g., Mymaridae, Eulophidae, Pteromalinae) are evenly spread across the period of chalcidoid evolution from early Cretaceous to the late Eocene. Several shifts in biology and morphology (e.g., in host exploitation, body shape and size, life history), each followed by rapid radiations, have likely enabled the evolutionary success of Chalcidoidea.


Assuntos
Filogenia , Transcriptoma , Vespas/classificação , Animais , Evolução Molecular , Fósseis , Sequenciamento de Nucleotídeos em Larga Escala , Óvulo/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Vespas/genética
4.
Mol Phylogenet Evol ; 116: 213-226, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28887149

RESUMO

The wasp family Vespidae comprises more than 5000 described species which represent life history strategies ranging from solitary and presocial to eusocial and socially parasitic. The phylogenetic relationships of the major vespid wasp lineages (i.e., subfamilies and tribes) have been investigated repeatedly by analyzing behavioral and morphological traits as well as nucleotide sequences of few selected genes with largely incongruent results. Here we reconstruct their phylogenetic relationships using a phylogenomic approach. We sequenced the transcriptomes of 24 vespid wasp and eight outgroup species and exploited the transcript sequences for design of probes for enriching 913 single-copy protein-coding genes to complement the transcriptome data with nucleotide sequence data from additional 25 ethanol-preserved vespid species. Results from phylogenetic analyses of the combined sequence data revealed the eusocial subfamily Stenogastrinae to be the sister group of all remaining Vespidae, while the subfamily Eumeninae turned out to be paraphyletic. Of the three currently recognized eumenine tribes, Odynerini is paraphyletic with respect to Eumenini, and Zethini is paraphyletic with respect to Polistinae and Vespinae. Our results are in conflict with the current tribal subdivision of Eumeninae and thus, we suggest granting subfamily rank to the two major clades of "Zethini": Raphiglossinae and Zethinae. Overall, our findings corroborate the hypothesis of two independent origins of eusociality in vespid wasps and suggest a single origin of using masticated and salivated plant material for building nests by Raphiglossinae, Zethinae, Polistinae, and Vespinae. The inferred phylogenetic relationships and the open access vespid wasp target DNA enrichment probes will provide a valuable tool for future comparative studies on species of the family Vespidae, including their genomes, life styles, evolution of sociality, and co-evolution with other organisms.


Assuntos
DNA/genética , Filogenia , Transcriptoma/genética , Vespas/classificação , Vespas/genética , Animais , Sequência de Bases , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
5.
Proc Biol Sci ; 282(1799): 20141850, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25621331

RESUMO

Central to the concept of ecological speciation is the evolution of ecotypes, i.e. groups of individuals occupying different ecological niches. However, the mechanisms behind the first step of separation, the switch of individuals into new niches, are unclear. One long-standing hypothesis, which was proposed for insects but never tested, is that early learning causes new ecological preferences, leading to a switch into a new niche within one generation. Here, we show that a host switch occurred within a parasitoid wasp, which is associated with the ability for early learning and the splitting into separate lineages during speciation. Lariophagus distinguendus consists of two genetically distinct lineages, most likely representing different species. One attacks drugstore beetle larvae (Stegobium paniceum (L.)), which were probably the ancestral host of both lineages. The drugstore beetle lineage has an innate host preference that cannot be altered by experience. In contrast, the second lineage is found on Sitophilus weevils as hosts and changes its preference by early learning. We conclude that a host switch has occurred in the ancestor of the second lineage, which must have been enabled by early learning. Because early learning is widespread in insects, it might have facilitated ecological divergence and associated speciation in this hyperdiverse group.


Assuntos
Especiação Genética , Interações Hospedeiro-Parasita/genética , Vespas/fisiologia , Animais , Comportamento Animal , Ecossistema , Feminino , Aprendizagem , Dados de Sequência Molecular , Especificidade da Espécie , Vespas/genética
6.
Front Zool ; 10(1): 55, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24044698

RESUMO

BACKGROUND: Many scientific disciplines rely on correct taxon delineations and identifications. So does a great part of the general public as well as decision makers. Researchers, students and enthusiastic amateurs often feel frustrated because information about species remains scattered, difficult to access, or difficult to decipher. Together, this affects almost anyone who wishes to identify species or verify identifications. Many remedies have been proposed, but we argue that the role of natural history collections remains insufficiently appreciated. We suggest using state-of-the-art mass imaging technology and to join forces to create a global natural history metacollection on the internet, providing access to the morphology of tens of millions of specimens and making them available for automated digital image analysis. DISCUSSION: Robotic high-resolution imaging technology and fast (high performance) computer-based image stitching make it now feasible to digitize entire collection drawers typically used for arthropod collections, or trays or containers used for other objects. Resolutions of 500 megapixels and much higher are already utilized to capture the contents of 40x50 cm collection drawers, providing amazing detail of specimens. Flanked by metadata entry, this helps to create access to tens of thousands of specimens in days. By setting priorities and combining the holdings of the most comprehensive collections for certain taxa, drawer digitizing offers the unique opportunity to create a global, virtual metacollection.The taxonomic and geographic coverage of such a collection could never be achieved by a single institution or individual. We argue that by joining forces, many new impulses will emerge for systematic biology, related fields and understanding of biodiversity in general.Digitizing drawers containing unidentified, little-curated specimens is a contribution towards the beginning of a new era of online curation. It also will help taxonomists and curators to discover and process the millions of "gems" of undescribed species hidden in museum accessions. SUMMARY: Our proposal suggests creating virtual, high-resolution image resources that will, for the first time in history, provide access for expert scientists as well as students and the general public to the enormous wealth of the world's natural history collections. We foresee that this will contribute to a better understanding, appreciation and increased use of biodiversity resources and the natural history collections serving this cause.

7.
Cladistics ; 29(5): 466-542, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34798768

RESUMO

Chalcidoidea (Hymenoptera) is extremely diverse with an estimated 500 000 species. We present the first phylogenetic analysis of the superfamily based on both morphological and molecular data. A web-based, systematics workbench mx was used to score 945 character states illustrated by 648 figures for 233 morphological characters for a total of 66 645 observations for 300 taxa. The matrix covers 22 chalcidoid families recognized herein and includes 268 genera within 78 of 83 subfamilies. Morphological data were analysed alone and in combination with molecular data from ribosomal 18S (2105 bp) and 28S D2-D5 expansion regions (1812 bp). Analyses were analysed alone and in combined datasets using implied-weights parsimony and likelihood. Proposed changes in higher classification resulting from the analyses include: (i) recognition of Eriaporidae, revised status; (ii) recognition of Cynipencyrtidae, revised status; (iii) recognition of Azotidae, revised status; (iv) inclusion of Sycophaginae in Agaonidae, revised status; (v) reclassification of Aphelinidae to include Aphelininae, Calesinae, Coccophaginae, Eretmocerinae and Eriaphytinae; (vi) inclusion of Cratominae and Panstenoninae within Pteromalinae (Pteromalidae), new synonymy; (vii) inclusion of Epichrysomallinae in Pteromalidae, revised status. At a higher level, Chalcidoidea was monophyletic, with Mymaridae the sister group of Rotoitidae plus the remaining Chalcidoidea. A eulophid lineage was recovered that included Aphelinidae, Azotidae, Eulophidae, Signiphoridae, Tetracampidae and Trichogrammatidae. Eucharitidae and Perilampidae were monophyletic if Eutrichosomatinae (Pteromalidae) was included, and Eupelmidae was monophyletic if Oodera (Pteromalidae: Cleonyminae) was included. Likelihood recovered a clade of Eupelmidae + (Tanaostigmatidae + (Cynipencyrtus + Encyrtidae). Support for other lineages and their impact on the classification of Chalcidoidea is discussed. Several life-history traits are mapped onto the new phylogeny.

8.
Zootaxa ; 3731: 395-8, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25277582

RESUMO

The ensign wasp genus Hyptia Illiger was previously known from 52 extant New World species and one fossil species from Lower Miocene to Upper Oligocene Mexican amber. Hyptia hennigi sp. nov., from Eocene Baltic amber, is the oldest known species and the first member of the genus from the Old World.


Assuntos
Âmbar , Fósseis , Himenópteros/anatomia & histologia , Himenópteros/classificação , Animais , Países Bálticos , Especificidade da Espécie
9.
Zootaxa ; 3609: 91-5, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24699575

RESUMO

The fossil evaniid wasp Cretevania bechlyi sp. nov., is described based on a well preserved female specimen from Cretaceous Burmese amber. The new species is placed in the genus Cretevania Rasnitsyn, 1975 based on the elongation of the mid and hind trochantellus, the fore wing venation (e.g. first marginal cell triangular and broad, 2m-cu absent, second sub-marginal cell separated from first discal cell), the shape of the petiole (subcylindrical with distal extension) and other distinct morphological features. Cretevania bechlyi sp. nov. differs from all previously described species in having just 10 flagellomeres (11 in other members of the genus) and in the presence of notauli (absent in other species). The new species represents the first species of Cretevania from Burmese amber and significantly expands the known morphological diversity of Mesozoic Evaniidae.


Assuntos
Fósseis , Vespas/anatomia & histologia , Vespas/classificação , Âmbar , Animais , Feminino , Mianmar
10.
Zootaxa ; 3736: 1-53, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25112611

RESUMO

The hymenopteran fauna of New Caledonia is reviewed and compared with that of Australia and New Zealand, as well as other islands in the south-west Pacific. In conclusion, several different scenarios (e.g., recent dispersal events and radiations) can be used to explain the extant distribution of New Caledonian Hymenoptera. A detailed checklist of 409 species and subspecies of Hymenoptera of New Caledonia is provided, along with estimates of the undescribed fauna, and a summary of the general biology of the families represented in the region.


Assuntos
Insetos/classificação , Animais , Austrália , Lista de Checagem , Nova Caledônia , Nova Zelândia
11.
Zootaxa ; 5278(3): 563-577, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37518757

RESUMO

The parasitoid wasp genus Trichacis Förster is revised for Europe. Examination of historical and modern collections combined with DNA barcoding revealed the presence of only a single species in Europe, Trichacis tristis (Nees, 1834), redescribed here. Fourteen new synonymies are proposed for T. tristis: T. abdominalis Thomson, 1859 syn.nov.; T. bidentiscutum Szabó, 1981 syn.nov.; T. didas (Walker, 1835) syn.nov.; T. fusciala Szabó, 1981 syn.nov.; T. hajduica Szabó, 1981 syn.nov.; T. illusor Kieffer, 1916 syn.nov.; T. nosferatus Buhl, 1997 syn.nov.; T. pisis (Walker, 1835) syn.nov.; T. persicus Asadi & Buhl, 2021 syn.nov.; T. pulchricornis Szelényi, 1953 syn.nov.; T. quadriclava Szabó, 1981 syn.nov.; T. remulus (Walker, 1835) syn.nov.; T. vitreus Buhl, 1997 syn.nov.; T. weiperti Buhl, 2019 syn.nov.. Four species are transferred to Amblyaspis Förster: A. afurcata (Szabó, 1977) comb. nov., A. hungarica (Szabó, 1977), comb. nov., A. pannonica (Szabó, 1977) comb. nov., and A. tatika (Szabó, 1977) comb. nov. Intraspecific variation, biological associations, and taxonomic history are discussed. DNA barcodes are provided and analyzed in the context of worldwide Trichacis and its sister genus Isocybus Förster.


Assuntos
Himenópteros , Vespas , Animais , Vespas/genética
12.
Biodivers Data J ; 11: e107051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915314

RESUMO

In the face of insect decline, monitoring projects are launched widely to assess trends of insect populations. Collecting over long time periods results in large numbers of samples with thousands of individuals that are often just stored in freezers waiting to be further processed. As the time-consuming process of sorting and identifying specimens prevents taxonomists from working on mass samples, important information on species composition remains unknown and taxonomically neglected species remain undiagnosed. Size fractioning of bulk samples can improve sample handling and, thus, can help to overcome the taxonomic impediment. In this paper, we evaluate the efficiency of the fractionator in separating Hymenoptera families from a Malaise trap sample of a meadow ecosystem over a two week interval to make them available for further morphological identification. The fractionator system by Buffington and Gates (2008) was used to separate the sample in two size classes - a large (macro) and a small (micro) fraction - and Hymenoptera specimens were then counted and identified on family level. In total, 2,449 Hymenoptera specimens were found in the macro fraction and 3,016 in the micro fraction (5,465 specimens in total). For 24 out of 34 Hymenoptera families (71%), separation was significant. This study illustrates the efficiency of the fractionator and its potential to improve workflows dealing with specimen-rich Malaise trap samples.

13.
Cladistics ; 28(1): 80-112, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34861753

RESUMO

The first comprehensive analysis of higher-level phylogeny of the order Hymenoptera is presented. The analysis includes representatives of all extant superfamilies, scored for 392 morphological characters, and sequence data for four loci (18S, 28S, COI and EF-1α). Including three outgroup taxa, 111 terminals were analyzed. Relationships within symphytans (sawflies) and Apocrita are mostly resolved. Well supported relationships include: Xyeloidea is monophyletic, Cephoidea is the sister group of Siricoidea + [Xiphydrioidea + (Orussoidea + Apocrita)]; Anaxyelidae is included in the Siricoidea, and together they are the sister group of Xiphydrioidea + (Orussoidea + Apocrita); Orussoidea is the sister group of Apocrita, Apocrita is monophyletic; Evanioidea is monophyletic; Aculeata is the sister group of Evanioidea; Proctotrupomorpha is monophyletic; Ichneumonoidea is the sister group of Proctotrupomorpha; Platygastroidea is sister group to Cynipoidea, and together they are sister group to the remaining Proctotrupomorpha; Proctotrupoidea s. str. is monophyletic; Mymarommatoidea is the sister group of Chalcidoidea; Mymarommatoidea + Chalcidoidea + Diaprioidea is monophyletic. Weakly supported relationships include: Stephanoidea is the sister group of the remaining Apocrita; Diaprioidea is monophyletic; Ceraphronoidea is the sister group of Megalyroidea, which together form the sister group of [Trigonaloidea (Aculeata + Evanioidea)]. Aside from paraphyly of Vespoidea within Aculeata, all currently recognized superfamilies are supported as monophyletic. The diapriid subfamily Ismarinae is raised to family status, Ismaridae stat. nov. © The Will Henning Society 2011.

14.
BMC Biol ; 9: 55, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21851592

RESUMO

BACKGROUND: Enormous molecular sequence data have been accumulated over the past several years and are still exponentially growing with the use of faster and cheaper sequencing techniques. There is high and widespread interest in using these data for phylogenetic analyses. However, the amount of data that one can retrieve from public sequence repositories is virtually impossible to tame without dedicated software that automates processes. Here we present a novel bioinformatics pipeline for downloading, formatting, filtering and analyzing public sequence data deposited in GenBank. It combines some well-established programs with numerous newly developed software tools (available at http://software.zfmk.de/). RESULTS: We used the bioinformatics pipeline to investigate the phylogeny of the megadiverse insect order Hymenoptera (sawflies, bees, wasps and ants) by retrieving and processing more than 120,000 sequences and by selecting subsets under the criteria of compositional homogeneity and defined levels of density and overlap. Tree reconstruction was done with a partitioned maximum likelihood analysis from a supermatrix with more than 80,000 sites and more than 1,100 species. In the inferred tree, consistent with previous studies, "Symphyta" is paraphyletic. Within Apocrita, our analysis suggests a topology of Stephanoidea + (Ichneumonoidea + (Proctotrupomorpha + (Evanioidea + Aculeata))). Despite the huge amount of data, we identified several persistent problems in the Hymenoptera tree. Data coverage is still extremely low, and additional data have to be collected to reliably infer the phylogeny of Hymenoptera. CONCLUSIONS: While we applied our bioinformatics pipeline to Hymenoptera, we designed the approach to be as general as possible. With this pipeline, it is possible to produce phylogenetic trees for any taxonomic group and to monitor new data and tree robustness in a taxon of interest. It therefore has great potential to meet the challenges of the phylogenomic era and to deepen our understanding of the tree of life.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Himenópteros/classificação , Filogenia , Animais , Evolução Biológica , Himenópteros/genética , Dados de Sequência Molecular
15.
Biodivers Data J ; 10: e84860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761532

RESUMO

DNA barcodes provide a reliable and efficient solution to resolving cryptic species complexes and accelerate species discoveries. The superfamily Ceraphronoidea (Hymenoptera) is a group of parasitoid wasps for which a barcoding approach could be of great help, if it were not for the very poor results. The inability to obtain barcodes for the majority of treated ceraphronoids halts progress on the taxonomy of this hyperdiverse parasitoid group. We here present a working protocol for the barcoding of ceraphronoid wasps which yields a first-time over 90% success rate.

16.
Biodivers Data J ; 9: e77092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916873

RESUMO

BACKGROUND: Despite their ecological and economic importance, hymenopteran parasitoids are severely understudied. Even in countries with a long taxonomic history such as Germany, dating back to the 18th century and including prolific figures like Christian Gottfired Nees von Esenbeck and Otto Schmiedeknecht, those species-rich groups are seldom the subject of comprehensive research efforts, leaving their true diversity unknown. This is often due to their small size of a few millimetres on average, leading to difficulties in their identification and examination. The chalcidoid family Pteromalidae is no exception to this neglect. So far, 735 species have been reported from Germany. Estimating the diversity of this group is not possible, but it has to be assumed that many more species are still to be discovered in Germany. NEW INFORMATION: With this study, we improve the knowledge on pteromalid diversity and present new records of 17 genera and 41 species, previously unknown to occur in Germany. We also match and describe previously unknown sexes of two species, based on DNA barcode data. The results of this study were generated as part of the German Barcode of Life Project. The newly-recorded species are illustrated and notes on the biology and distribution are given. The ecological significance of Pteromalidae and potential value as indicators for nature conservation efforts are briefly discussed.

17.
Biodivers Data J ; 9: e69856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602838

RESUMO

BACKGROUND: Scelionid wasps are arthropod egg parasitoids, many of which are relevant to global biosecurity. However, the scelionid fauna of Germany has not received much attention from professional taxonomists. NEW INFORMATION: Eleven species and four genera are recorded for the first time from Germany, including species of interest to agriculture and biological control. First genus records include Baryconus Förster, Macroteleia Westwood, Paratelenomus Dodd and Probaryconus Kieffer. First species records include B.europaeus (Kieffer), Idrisnigroclavatus (Kieffer), Idrissemiflavus (Kieffer), M.bicolora Kieffer, M.pannonica Szabo, Paratelenomussaccharalis (Dodd), Trimorusvaricornis (Walker), Trissolcusbasalis (Wollaston), Trissolcusbelenus (Walker), Trissolcuscolemani (Crawford) and Trissolcusflavipes (Thompson). COI barcodes are identified for the first time from B.europaeus and M.bicolora. Each species is illustrated and updated world distributions are provided. Implications for agriculture are discussed.

18.
PeerJ ; 9: e10939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113480

RESUMO

Spalangiopelta is a small genus of chalcid wasps that has received little attention despite the widespread distribution of its extant species. The fossil record of the genus is restricted to a single species from Miocene Dominican amber. We describe two new fossil species, Spalangiopelta darlingi sp. n. and Spalangiopelta semialba sp. n. from Baltic amber. The species can be placed within the extant genus Spalangiopelta based on the distinctly raised hind margin of the mesopleuron. 3D models reconstructed from µCT data were utilized to assist in the descriptions. Furthermore, we provide a key for the females of all currently known Spalangiopelta species. The phylogenetic placement of the fossils within the genus is analyzed using parsimony analysis based on morphological characters. Phylogenetic and functional relevance of two wing characters, admarginal setae and the hyaline break, are discussed. The newly described Baltic amber fossils significantly extend the minimum age of Spalangiopelta to the Upper Eocene.

19.
Zootaxa ; 4731(2): zootaxa.4731.2.7, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32229819

RESUMO

A quick and easy handling method for ethanol-preserved arthropods is presented, based on tea filter bags and holders. The method is especially suitable for short term storage of specimens resulting from Malaise traps, yellow pan traps and pitfall traps and can be used directly in the field, for subsequent transport and processing of specimens in the laboratory.


Assuntos
Artrópodes , Biodiversidade , Animais , Etanol , Preservação Biológica , Chá
20.
Zootaxa ; 4885(1): zootaxa.4885.1.2, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33311285

RESUMO

The geometrid genera Synopsia Hübner, 1825 and Synopsidia Djakonov, 1935 are revised, both being earlier validated at genus rank. Type specimens, original descriptions and additional specimens from different localities were examined. The revision is based on morphological characters, molecular data and distribution records. As a result, Synopsidia syn. nov. is regarded as junior synonym of the genus Synopsia. The synonymies of the species Scodonia tekkearia Christoph, 1883 and Synopsia znojkoi Djakonov, 1935 with Synopsia phasidaria phasidaria (Rogenhofer, 1873) comb. nov. are confirmed. Furthermore, Synopsidia phasidaria alvandi Wiltshire, 1966 syn. nov., Synopsidia phasidaria ardschira Brandt, 1938 syn. nov., Synopsidia phasidaria chiraza Brandt, 1938 syn. nov., Hashtaresia jodes Wehrli, 1936 syn. nov. and Synopsidia phasidaria mirabica Wehrli, 1941 syn. nov. are regarded as synonyms of Synopsia phasidaria phasidaria (Rogenhofer, 1873) comb. nov.. Synopsia phasidaria afghana (Wiltshire, 1966) comb. nov. is tentatively validated at subspecific rank. Synopsia centralis (Wiltshire, 1966) comb. nov., bona sp. is upgraded from subspecies to species level. Wing pattern, as well as male and female genitalia and diagnostic characters of examined genera and species are illustrated and analyzed. The distribution patterns of Synopsia phasidaria comb. nov. and Synopsia centralis bona sp., as well as the type localities of all discussed taxa, are provided. A complete checklist of the genus is given.


Assuntos
Mariposas , Distribuição Animal , Animais , Feminino , Masculino , Oriente Médio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA