Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phys Rev Lett ; 131(11): 117001, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774257

RESUMO

Josephson junctions in InAs nanowires proximitized with an Al shell can host gate-tunable Andreev bound states. Depending on the bound state occupation, the fermion parity of the junction can be even or odd. Coherent control of Andreev bound states has recently been achieved within each parity sector, but it is impeded by incoherent parity switches due to excess quasiparticles in the superconducting environment. Here, we show that we can polarize the fermion parity dynamically using microwave pulses by embedding the junction in a superconducting LC resonator. We demonstrate polarization up to 94%±1% (89%±1%) for the even (odd) parity as verified by single shot parity readout. Finally, we apply this scheme to probe the flux-dependent transition spectrum of the even or odd parity sector selectively, without any postprocessing or heralding.

2.
Phys Rev Lett ; 128(19): 197702, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622049

RESUMO

We performed microwave spectroscopy of an InAs nanowire between superconducting contacts implementing a finite-length, multichannel Josephson weak link. Certain features in the spectra, such as the splitting by spin-orbit interactions of the transition lines among Andreev states, have been already understood in terms of noninteracting models. However, we identify here additional transitions, which evidence the presence of Coulomb interactions. By combining experimental measurements and model calculations, we reach a qualitative understanding of these very rich Andreev spectra.

3.
Phys Rev Lett ; 129(22): 227701, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493424

RESUMO

Electrostatic charging affects the many-body spectrum of Andreev states, yet its influence on their microwave properties has not been elucidated. We developed a circuit quantum electrodynamics probe that, in addition to transition spectroscopy, measures the microwave susceptibility of different states of a semiconductor nanowire weak link with a single dominant (spin-degenerate) Andreev level. We found that the microwave susceptibility does not exhibit a particle-hole symmetry, which we qualitatively explain as an influence of Coulomb interaction. Moreover, our state-selective measurement reveals a large, π-phase shifted contribution to the response common to all many-body states which can be interpreted as arising from a phase-dependent continuum in the superconducting density of states.


Assuntos
Eletricidade Estática
4.
Nature ; 531(7593): 206-9, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961654

RESUMO

Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a 'Majorana island') that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.

5.
Phys Rev Lett ; 126(4): 047701, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576664

RESUMO

We investigate transmon qubits made from semiconductor nanowires with a fully surrounding superconducting shell. In the regime of reentrant superconductivity associated with the destructive Little-Parks effect, numerous coherent transitions are observed in the first reentrant lobe, where the shell carries 2π winding of superconducting phase, and are absent in the zeroth lobe. As junction density was increased by gate voltage, qubit coherence was suppressed then lost in the first lobe. These observations and numerical simulations highlight the role of winding-induced Andreev states in the junction.

6.
Phys Rev Lett ; 125(11): 116803, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975997

RESUMO

An odd-occupied quantum dot in a Josephson junction can flip transmission phase, creating a π junction. When the junction couples topological superconductors, no phase flip is expected. We investigate this and related effects in a full-shell hybrid interferometer, using gate voltage to control dot-junction parity and axial magnetic flux to control the transition from trivial to topological superconductivity. Enhanced zero-bias conductance and critical current for odd parity in the topological phase reflects hybridization of the confined spin with zero-energy modes in the leads.

7.
Phys Rev Lett ; 124(24): 246803, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639819

RESUMO

We demonstrate strong suppression of charge dispersion in a semiconductor-based transmon qubit across Josephson resonances associated with a quantum dot in the junction. On resonance, dispersion is drastically reduced compared to conventional transmons with corresponding Josephson and charging energies. We develop a model of qubit dispersion for a single-channel resonance, which is in quantitative agreement with experimental data.

8.
Phys Rev Lett ; 124(5): 056801, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083909

RESUMO

Creating a transmon qubit using semiconductor-superconductor hybrid materials not only provides electrostatic control of the qubit frequency, it also allows parts of the circuit to be electrically connected and disconnected in situ by operating a semiconductor region of the device as a field-effect transistor. Here, we exploit this feature to compare in the same device characteristics of the qubit, such as frequency and relaxation time, with related transport properties such as critical supercurrent and normal-state resistance. Gradually opening the field-effect transistor to the monitoring circuit allows the influence of weak-to-strong dc monitoring of a "live" qubit to be measured. A model of this influence yields excellent agreement with experiment, demonstrating a relaxation rate mediated by a gate-controlled environmental coupling.

9.
Phys Rev Lett ; 125(5): 056801, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794832

RESUMO

Coherence of superconducting qubits can be improved by implementing designs that protect the parity of Cooper pairs on superconducting islands. Here, we introduce a parity-protected qubit based on voltage-controlled semiconductor nanowire Josephson junctions, taking advantage of the higher harmonic content in the energy-phase relation of few-channel junctions. A symmetric interferometer formed by two such junctions, gate-tuned into balance and frustrated by a half-quantum of applied flux, yields a cos(2φ) Josephson element, reflecting coherent transport of pairs of Cooper pairs. We demonstrate that relaxation of the qubit can be suppressed tenfold by tuning into the protected regime.

10.
Nano Lett ; 18(9): 5673-5680, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30134098

RESUMO

Difficulties in obtaining high-performance p-type transistors and gate insulator charge-trapping effects present two major challenges for III-V complementary metal-oxide semiconductor (CMOS) electronics. We report a p-GaAs nanowire metal-semiconductor field-effect transistor (MESFET) that eliminates the need for a gate insulator by exploiting the Schottky barrier at the metal-GaAs interface. Our device beats the best-performing p-GaSb nanowire metal-oxide-semiconductor field effect transistor (MOSFET), giving a typical subthreshold swing of 62 mV/dec, within 4% of the thermal limit, on-off ratio ∼105, on-resistance ∼700 kΩ, contact resistance ∼30 kΩ, peak transconductance 1.2 µS/µm, and high-fidelity ac operation at frequencies up to 10 kHz. The device consists of a GaAs nanowire with an undoped core and heavily Be-doped shell. We carefully etch back the nanowire at the gate locations to obtain Schottky-barrier insulated gates while leaving the doped shell intact at the contacts to obtain low contact resistance. Our device opens a path to all-GaAs nanowire MESFET complementary circuits with simplified fabrication and improved performance.

11.
Phys Rev Lett ; 121(3): 037703, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085813

RESUMO

We use the effective g factor of Andreev subgap states in an axial magnetic field to investigate how the superconducting density of states is distributed between the semiconductor core and the superconducting shell in hybrid nanowires. We find a steplike reduction of the Andreev g factor and an improved hard gap with reduced carrier density in the nanowire, controlled by gate voltage. These observations are relevant for Majorana devices, which require tunable carrier density and a g factor exceeding that of the parent superconductor.

12.
Phys Rev Lett ; 121(25): 257701, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608792

RESUMO

We demonstrate the Josephson effect in a serial double quantum dot defined in a nanowire with epitaxial superconducting leads. The supercurrent stability diagram adopts a honeycomb pattern. We observe sharp discontinuities in the magnitude of the critical current, I_{c}, as a function of dot occupation, related to doublet to singlet ground state transitions. Detuning of the energy levels offers a tuning knob for I_{c}, which attains a maximum at zero detuning. The consistency between experiment and theory indicates that our device is a faithful realization of the two-impurity Anderson model.

13.
Phys Rev Lett ; 120(10): 100502, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570312

RESUMO

We present an experimental study of flux- and gate-tunable nanowire transmons with state-of-the-art relaxation time allowing quantitative extraction of flux and charge noise coupling to the Josephson energy. We evidence coherence sweet spots for charge, tuned by voltage on a proximal side gate, where first order sensitivity to switching two-level systems and background 1/f noise is minimized. Next, we investigate the evolution of a nanowire transmon in a parallel magnetic field up to 70 mT, the upper bound set by the closing of the induced gap. Several features observed in the field dependence of qubit energy relaxation and dephasing times are not fully understood. Using nanowires with a thinner, partially covering Al shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation and other applications.

14.
Phys Rev Lett ; 121(4): 047001, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095962

RESUMO

The modern understanding of the Josephson effect in mesosopic devices derives from the physics of Andreev bound states, fermionic modes that are localized in a superconducting weak link. Recently, Josephson junctions constructed using semiconducting nanowires have led to the realization of superconducting qubits with gate-tunable Josephson energies. We have used a microwave circuit QED architecture to detect Andreev bound states in such a gate-tunable junction based on an aluminum-proximitized indium arsenide nanowire. We demonstrate coherent manipulation of these bound states, and track the bound-state fermion parity in real time. Individual parity-switching events due to nonequilibrium quasiparticles are observed with a characteristic timescale T_{parity}=160±10 µs. The T_{parity} of a topological nanowire junction sets a lower bound on the bandwidth required for control of Majorana bound states.

15.
Phys Rev Lett ; 121(14): 147701, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339420

RESUMO

We introduce selective area grown hybrid InAs/Al nanowires based on molecular beam epitaxy, allowing arbitrary semiconductor-superconductor networks containing loops and branches. Transport reveals a hard induced gap and unpoisoned 2e-periodic Coulomb blockade, with temperature dependent 1e features in agreement with theory. Coulomb peak spacing in parallel magnetic field displays overshoot, indicating an oscillating discrete near-zero subgap state consistent with device length. Finally, we investigate a loop network, finding strong spin-orbit coupling and a coherence length of several microns. These results demonstrate the potential of this platform for scalable topological networks among other applications.

16.
Nano Lett ; 17(2): 827-833, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28002672

RESUMO

A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials types-electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high-density integrated bioelectronic circuitry.


Assuntos
Arsenicais/química , Gálio/química , Índio/química , Nanofios/química , Condutividade Elétrica , Eletrônica , Elétrons , Equipamentos e Provisões , Tamanho da Partícula , Polietilenoglicóis/química , Prótons , Semicondutores
17.
Phys Rev Lett ; 118(13): 137701, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409973

RESUMO

We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (∼1 µs) and sets a bound for a weakly coupled island (>10 µs). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements.

18.
Nanotechnology ; 28(13): 134005, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28256451

RESUMO

GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly doped nanowires and inability to reach a clear off-state under gating for the highly doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio [Formula: see text], and sub-threshold slope 50 mV/dec at [Formula: see text] K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantisation highlighting the potential for future quantum device studies in this material system.

19.
Nat Mater ; 14(4): 400-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25581626

RESUMO

Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

20.
Phys Rev Lett ; 116(15): 150505, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127949

RESUMO

Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability characteristic of semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors below 0.7% for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent swap operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of 91%, demonstrating the potential of gatemon qubits for building scalable quantum processors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA