RESUMO
While high-throughput sequencing methods are revolutionizing fungal ecology, recovering accurate estimates of species richness and abundance has proven elusive. We sought to design internal transcribed spacer (ITS) primers and an Illumina protocol that would maximize coverage of the kingdom Fungi while minimizing nontarget eukaryotes. We inspected alignments of the 5.8S and large subunit (LSU) ribosomal genes and evaluated potential primers using PrimerProspector. We tested the resulting primers using tiered-abundance mock communities and five previously characterized soil samples. We recovered operational taxonomic units (OTUs) belonging to all 8 members in both mock communities, despite DNA abundances spanning 3 orders of magnitude. The expected and observed read counts were strongly correlated (r = 0.94 to 0.97). However, several taxa were consistently over- or underrepresented, likely due to variation in rRNA gene copy numbers. The Illumina data resulted in clustering of soil samples identical to that obtained with Sanger sequence clone library data using different primers. Furthermore, the two methods produced distance matrices with a Mantel correlation of 0.92. Nonfungal sequences comprised less than 0.5% of the soil data set, with most attributable to vascular plants. Our results suggest that high-throughput methods can produce fairly accurate estimates of fungal abundances in complex communities. Further improvements might be achieved through corrections for rRNA copy number and utilization of standardized mock communities. IMPORTANCE: Fungi play numerous important roles in the environment. Improvements in sequencing methods are providing revolutionary insights into fungal biodiversity, yet accurate estimates of the number of fungal species (i.e., richness) and their relative abundances in an environmental sample (e.g., soil, roots, water, etc.) remain difficult to obtain. We present improved methods for high-throughput Illumina sequencing of the species-diagnostic fungal ribosomal marker gene that improve the accuracy of richness and abundance estimates. The improvements include new PCR primers and library preparation, validation using a known mock community, and bioinformatic parameter tuning.
Assuntos
Biodiversidade , Primers do DNA/genética , Fungos/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Variação Genética , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Red clover is a hermaphroditic allogamous diploid (2n = 2x = 14) with a homomorphic gametophytic self-incompatibility (GSI) system (Trifolium pratense L.). Red clover GSI has long been studied, and it is thought that the genetic control of GSI constitutes a single locus. Although GSI genes have been identified in other species, the genomic location of the red clover GSI-locus remains unknown. The objective of this study was to use a mapping-based approach to identify simple sequence repeats (SSR) that were closely linked to the GSI-locus. Previously published SSR markers were used in this effort (Sato et al. in DNA Res 12:301-364, 2005). A bi-parental cross was initiated in which the parents were known to have one self-incompatibility allele (S-allele) in common. S-allele genotypes of 100 progeny were determined through test crosses and pollen compatibility. Pseudo F(1) linkage analysis isolated the GSI-locus on red clover linkage-group one within 2.5 cM of markers RCS5615, RCS0810, and RCS3161. A second 256 progeny mapping testcross population of a heterozygous self-compatible mutant revealed that this specific self-compatible mutant mapped to the same location as the GSI-locus. Finally, 82 genotypes were identified whose parents putatively shared one S-allele in common from maternal halfsib families derived from two random mating populations in which paternal identity was determined using molecular markers. Unique S-allele identity in the two random mating populations was tentatively inferred based on haplotypes of two highly allelic linkage-group one SSR (RCS0810 and RCS4956), which were closely linked to each other and the GSI-locus. Paternally derived pollen haplotype linkage analysis of RCS0810 and RCS4956 SSR and the GSI-locus again revealed tight linkage at 2.5 and 4.7 cM between the GSI-locus and RCS0810 and RCS4956, respectively. The map-based location of the GSI-locus in red clover has many immediate applications to red clover plant breeding and could be useful in helping to sequence the GSI-locus.
Assuntos
Mapeamento Cromossômico/métodos , Loci Gênicos/genética , Células Germinativas Vegetais/metabolismo , Trifolium/genética , Cruzamentos Genéticos , Ligação Genética , Reprodutibilidade dos TestesRESUMO
We present here the complete genome sequences of nine phages that infect Paenibacillus larvae, the causative agent of American foulbrood disease in honeybees. The phages were isolated from soil, propolis, and infected bees from three U.S. states. This is the largest number of P. larvae phage genomes sequenced in a single publication to date.
RESUMO
Microsatellites have been utilized for decades for genotyping individuals in various types of research. Automated scoring of microsatellite loci has allowed for rapid interpretation of large datasets. Although the use of software produces an automated process to score or genotype samples, several sources of error have to be taken into account to produce accurate genotypes. A variety of problems (from extracting DNA to entering a genotype into a database) which can arise throughout this process might result in erroneous genotype assignment to one or more samples, potentially confounding the conclusions of your study. Correctly assigning a genotype to a sample requires knowledge of the chemistry you use to generate the data as well as the software you use to analyze these results. In this chapter we describe the critical and more common points that researchers experience when scoring microsatellite loci. More importantly we provide insight from an experienced perspective for these challenges.
Assuntos
Técnicas Genéticas , Repetições de Microssatélites/genética , DNA/genética , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Loci Gênicos , Genótipo , Humanos , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , SoftwareRESUMO
PREMISE OF THE STUDY: Microsatellite primers were developed in the foundational tree species Pinus edulis to investigate population differentiation of P. edulis and hybridization among closely related species. ⢠METHODS AND RESULTS: Using a hybridization protocol, primer sets for 11 microsatellite loci were developed using megagametophyte tissue from P. edulis and scored for polymorphism in three populations of P. edulis and a single P. monophylla population. The primers amplified simple and compound di-, tri-, and pentanucleotide repeats with two to 18 alleles per locus. ⢠CONCLUSIONS: These results demonstrate the utility of the described primers for studies of population differentiation within and among P. edulis populations as well as across putative hybrid zones where P. edulis may coexist with sister species.