Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 575(7782): 350-354, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666705

RESUMO

Many real-world applications require artificial agents to compete and coordinate with other agents in complex environments. As a stepping stone to this goal, the domain of StarCraft has emerged as an important challenge for artificial intelligence research, owing to its iconic and enduring status among the most difficult professional esports and its relevance to the real world in terms of its raw complexity and multi-agent challenges. Over the course of a decade and numerous competitions1-3, the strongest agents have simplified important aspects of the game, utilized superhuman capabilities, or employed hand-crafted sub-systems4. Despite these advantages, no previous agent has come close to matching the overall skill of top StarCraft players. We chose to address the challenge of StarCraft using general-purpose learning methods that are in principle applicable to other complex domains: a multi-agent reinforcement learning algorithm that uses data from both human and agent games within a diverse league of continually adapting strategies and counter-strategies, each represented by deep neural networks5,6. We evaluated our agent, AlphaStar, in the full game of StarCraft II, through a series of online games against human players. AlphaStar was rated at Grandmaster level for all three StarCraft races and above 99.8% of officially ranked human players.


Assuntos
Reforço Psicológico , Jogos de Vídeo , Inteligência Artificial , Humanos , Aprendizagem
2.
Nat Methods ; 14(4): 403-406, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28218899

RESUMO

Differentiation alters molecular properties of stem and progenitor cells, leading to changes in their shape and movement characteristics. We present a deep neural network that prospectively predicts lineage choice in differentiating primary hematopoietic progenitors using image patches from brightfield microscopy and cellular movement. Surprisingly, lineage choice can be detected up to three generations before conventional molecular markers are observable. Our approach allows identification of cells with differentially expressed lineage-specifying genes without molecular labeling.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imagem com Lapso de Tempo/métodos , Animais , Área Sob a Curva , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Técnicas de Introdução de Genes , Aprendizado de Máquina , Masculino , Camundongos Mutantes , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo
3.
Ann Appl Stat ; 8(1): 309-330, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24795787

RESUMO

RNA-sequencing has revolutionized biomedical research and, in particular, our ability to study gene alternative splicing. The problem has important implications for human health, as alternative splicing may be involved in malfunctions at the cellular level and multiple diseases. However, the high-dimensional nature of the data and the existence of experimental biases pose serious data analysis challenges. We find that the standard data summaries used to study alternative splicing are severely limited, as they ignore a substantial amount of valuable information. Current data analysis methods are based on such summaries and are hence sub-optimal. Further, they have limited flexibility in accounting for technical biases. We propose novel data summaries and a Bayesian modeling framework that overcome these limitations and determine biases in a non-parametric, highly flexible manner. These summaries adapt naturally to the rapid improvements in sequencing technology. We provide efficient point estimates and uncertainty assessments. The approach allows to study alternative splicing patterns for individual samples and can also be the basis for downstream analyses. We found a several fold improvement in estimation mean square error compared popular approaches in simulations, and substantially higher consistency between replicates in experimental data. Our findings indicate the need for adjusting the routine summarization and analysis of alternative splicing RNA-seq studies. We provide a software implementation in the R package casper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA