Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1379936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835728

RESUMO

Introduction: The influence of vagus nerve stimulation (VNS) parameters on provoked cardiac effects in different levels of cardiac innervation is not well understood yet. This study examines the effects of VNS on heart rate (HR) modulation across a spectrum of cardiac innervation states, providing data for the potential optimization of VNS in cardiac therapies. Materials and Methods: Utilizing previously published data from VNS experiments on six sheep with intact innervation, and data of additional experiments in five rabbits post bilateral rostral vagotomy, and four isolated rabbit hearts with additionally removed sympathetic influences, the study explored the impact of diverse VNS parameters on HR. Results: Significant differences in physiological threshold charges were identified across groups: 0.09 ± 0.06 µC for intact, 0.20 ± 0.04 µC for vagotomized, and 9.00 ± 0.75 µC for isolated hearts. Charge was a key determinant of HR reduction across all innervation states, with diminishing correlations from intact (r = 0.7) to isolated hearts (r = 0.44). An inverse relationship was observed for the number of pulses, with its influence growing in conditions of reduced innervation (intact r = 0.11, isolated r = 0.37). Frequency and stimulation delay showed minimal correlations (r < 0.17) in all conditions. Conclusion: Our study highlights for the first time that VNS parameters, including stimulation intensity, pulse width, and pulse number, crucially modulate heart rate across different cardiac innervation states. Intensity and pulse width significantly influence heart rate in innervated states, while pulse number is key in denervated states. Frequency and delay have less impact impact across all innervation states. These findings suggest the importance of customizing VNS therapy based on innervation status, offering insights for optimizing cardiac neuromodulation.

2.
Brain Stimul ; 17(3): 510-524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38677543

RESUMO

BACKGROUND: Electrical stimulation of the vagus nerve (VN) is a therapy for epilepsy, obesity, depression, and heart diseases. However, whole nerve stimulation leads to side effects. We examined the neuroanatomy of the mid-cervical segment of the human VN and its superior cardiac branch to gain insight into the side effects of VN stimulation and aid in developing targeted stimulation strategies. METHODS: Nerve specimens were harvested from eight human body donors, then subjected to immunofluorescence and semiautomated quantification to determine the signature, quantity, and spatial distribution of different axonal categories. RESULTS: The right and left cervical VN (cVN) contained a total of 25,489 ± 2781 and 23,286 ± 3164 fibers, respectively. Two-thirds of the fibers were unmyelinated and one-third were myelinated. About three-quarters of the fibers in the right and left cVN were sensory (73.9 ± 7.5 % versus 72.4 ± 5.6 %), while 13.2 ± 1.8 % versus 13.3 ± 3.0 % were special visceromotor and parasympathetic, and 13 ± 5.9 % versus 14.3 ± 4.0 % were sympathetic. Special visceromotor and parasympathetic fibers formed clusters. The superior cardiac branches comprised parasympathetic, vagal sensory, and sympathetic fibers with the left cardiac branch containing more sympathetic fibers than the right (62.7 ± 5.4 % versus 19.8 ± 13.3 %), and 50 % of the left branch contained sensory and sympathetic fibers only. CONCLUSION: The study indicates that selective stimulation of vagal sensory and motor fibers is possible. However, it also highlights the potential risk of activating sympathetic fibers in the superior cardiac branch, especially on the left side.


Assuntos
Nervo Vago , Humanos , Nervo Vago/fisiologia , Nervo Vago/anatomia & histologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Fibras Nervosas/fisiologia , Coração/inervação , Coração/fisiologia , Coração/anatomia & histologia , Estimulação do Nervo Vago/métodos , Idoso
4.
Sci Rep ; 13(1): 4214, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918673

RESUMO

The cardiac responses to vagus nerve stimulation (VNS) are still not fully understood, partly due to uncontrollable confounders in the in-vivo experimental condition. Therefore, an ex-vivo Langendorff-perfused rabbit heart with intact vagal innervation is proposed to study VNS in absence of cofounding anesthetic or autonomic influences. The feasibility to evoke chronotropic responses through electrical stimulation ex-vivo was studied in innervated isolated rabbit hearts (n = 6). The general nerve excitability was assessed through the ability to evoke a heart rate (HR) reduction of at least 5 bpm (physiological threshold). The excitability was quantified as the charge needed for a 10-bpm HR reduction. The results were compared to a series of in-vivo experiments rabbits (n = 5). In the ex-vivo isolated heart, the baseline HR was about 20 bpm lower than in-vivo (158 ± 11 bpm vs 181 ± 19 bpm). Overall, the nerve remained excitable for about 5 h ex-vivo. The charges required to reduce HR by 5 bpm were 9 ± 6 µC and 549 ± 370 µC, ex-vivo and in-vivo, respectively. The charges needed for a 10-bpm HR reduction, normalized to the physiological threshold were 1.78 ± 0.8 and 1.22 ± 0.1, in-vivo and ex-vivo, respectively. Overall, the viability of this ex-vivo model to study the acute cardiac effects of VNS was demonstrated.


Assuntos
Estimulação do Nervo Vago , Animais , Coelhos , Estimulação do Nervo Vago/métodos , Coração/fisiologia , Nervo Vago/fisiologia , Sistema Nervoso Autônomo , Estimulação Elétrica , Bradicardia , Frequência Cardíaca
5.
Sci Rep ; 12(1): 18794, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335207

RESUMO

Persistent sinus tachycardia substantially increases the risk of cardiac death. Vagus nerve stimulation (VNS) is known to reduce the heart rate, and hence may be a non-pharmacological alternative for the management of persistent sinus tachycardia. To precisely regulate the heart rate using VNS, closed-loop control strategies are needed. Therefore, in this work, we developed two closed-loop VNS strategies using an in-silico model of the cardiovascular system. Both strategies employ a proportional-integral controller that operates on the current amplitude. While one control strategy continuously delivers stimulation pulses to the vagus nerve, the other applies bursts of stimuli in synchronization with the cardiac cycle. Both were evaluated in Langendorff-perfused rabbit hearts (n = 6) with intact vagal innervation. The controller performance was quantified by rise time (Tr), steady-state error (SSE), and percentual overshoot amplitude (%OS). In the ex-vivo setting, the cardiac-synchronized variant resulted in Tr = 10.7 ± 4.5 s, SSE = 12.7 ± 9.9 bpm and %OS = 5.1 ± 3.6% while continuous stimulation led to Tr = 10.2 ± 5.6 s, SSE = 10 ± 6.7 bpm and %OS = 3.2 ± 1.9%. Overall, both strategies produced a satisfying and reproducible performance, highlighting their potential use in persistent sinus tachycardia.


Assuntos
Estimulação do Nervo Vago , Animais , Coelhos , Frequência Cardíaca/fisiologia , Taquicardia Sinusal , Nervo Vago/fisiologia , Coração/fisiologia
6.
Front Cell Dev Biol ; 10: 968870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172280

RESUMO

Background: Vagus nerve stimulation (VNS) has gained great importance as a promising therapy for a myriad of diseases. Of particular interest is the therapy of cardiovascular diseases, such as heart failure or atrial fibrillation using selective cardiac VNS. However, there is still a lack of organ-specific anatomical knowledge about the fascicular anatomy and topography of the cardiac branch (CB), which diminishes the therapeutic possibilities for selective cardiac neuromodulation. Here, we established a topographical and anatomical map of the superior cardiac VN in two animal species to dissect cervical and cardiac VN morphology. Methods: Autonomic nerves including superior CBs were harvested from domestic pigs and New Zeeland rabbits followed by imaging with microcomputed tomography (µCT) and 3D rendering. The data were analyzed in terms of relevant topographical and anatomical parameters. Results: Our data showed that cardiac vagal fascicles remained separated from other VN fascicles up to 22.19 mm (IQR 14.02-41.30 mm) in pigs and 7.68 mm (IQR 4.06-12.77 mm) in rabbits from the CB point and then started merging with other fascicles. Exchanges of nerve fascicles between sympathetic trunk (ST) and VN were observed in 3 out of 11 nerves, which might cause additional unwanted effects in unselective VNS. Our 3D rendered digital model of the cardiac fascicles was generated showing that CB first remained on the medial side where it branched off the VN, as also shown in the µCT data of 11 pig nerves, and then migrated towards the ventromedial site the further it was traced cranially. Conclusion: Our data provided an anatomical map of the cardiac vagal branches including cervical VN and ST for future approaches of selective cardiac neurostimulation, indicating the best position of selective cardiac VNS just above the CB point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA