Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771094

RESUMO

Homoaggregates of isocyanic acid (HNCO) were studied using FTIR spectroscopy combined with a low-temperature matrix isolation technique and quantum chemical calculations. Computationally, the structures of the HNCO dimers and trimers were optimized at the MP2, B3LYPD3 and B2PLYPD3 levels of theory employing the 6-311++G(3df,3pd) basis set. Topological analysis of the electron density (AIM) was used to identify the type of non-covalent interactions in the studied aggregates. Five stable minima were located on the potential energy surface for (HNCO)2, and nine were located on the potential energy surface for (HNCO)3. The most stable dimer (D1) involves a weak, almost linear N-H⋯N hydrogen bond. Other structures are bound by a N-H⋯O hydrogen bond or by O⋯C or N⋯N van der Waals interactions. Similar types of interactions as in (HNCO)2 were found in the case of HNCO trimers. Among nine stable (HNCO)3 structures, five represent cyclic forms. The most stable T1 trimer structure is characterized by a six-membered ring formed by three N-H⋯N hydrogen bonds and representing high symmetry (C3h). The analysis of the HNCO/Ar spectra after deposition indicates that the N-H⋯O hydrogen-bonded dimers are especially prevalent. Upon annealing, HNCO trimers were observed as well. Identification of the experimentally observed species relied on previous experimental data on HNCO complexes as well as computed data on HNCO homoaggregates' vibrational spectra.

2.
J Exp Biol ; 225(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35502753

RESUMO

Sleep is an evolutionarily conserved process that has been described in different animal systems. For insects, sleep characterization has been primarily achieved using behavioral and electrophysiological correlates in a few systems. Sleep in mosquitoes, which are important vectors of disease-causing pathogens, has not been directly examined. This is surprising as circadian rhythms, which have been well studied in mosquitoes, influence sleep in other systems. In this study, we characterized sleep in mosquitoes using body posture analysis and behavioral correlates, and quantified the effect of sleep deprivation on sleep rebound, host landing and blood-feeding propensity. Body and appendage position metrics revealed a clear distinction between the posture of mosquitoes in their putative sleep and awake states for multiple species, which correlated with a reduction in responsiveness to host cues. Sleep assessment informed by these posture analyses indicated significantly more sleep during periods of low activity. Night-time and daytime sleep deprivation resulting from the delivery of vibration stimuli induced sleep rebound in the subsequent phase in day and night active mosquitoes, respectively. Lastly, sleep deprivation suppressed host landing in both laboratory and field settings, and impaired blood feeding of a human host when mosquitoes would normally be active. These results suggest that quantifiable sleep states occur in mosquitoes and highlight the potential epidemiological importance of mosquito sleep.


Assuntos
Culicidae , Animais , Culicidae/fisiologia , Comportamento Alimentar/fisiologia , Mosquitos Vetores/fisiologia , Sono , Privação do Sono
3.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056808

RESUMO

Weak complexes of isocyanic acid (HNCO) with nitrogen were studied computationally employing MP2, B2PLYPD3 and B3LYPD3 methods and experimentally by FTIR matrix isolation technique. The results show that HNCO interacts specifically with N2. For the 1:1 stoichiometry, three stable minima were located on the potential energy surface. The most stable of them involves a weak, almost linear hydrogen bond from the NH group of the acid molecule to nitrogen molecule lone pair. Two other structures are bound by van der Waals interactions of N⋯N and C⋯N types. The 1:2 and 2:1 HNCO complexes with nitrogen were computationally tracked as well. Similar types of interactions as in the 1:1 complexes were found in the case of the higher stoichiometry complexes. Analysis of the HNCO/N2/Ar spectra after deposition indicates that the 1:1 hydrogen-bonded complex is prevalent in argon matrices with a small amount of the van der Waals structures also present. Upon annealing, complexes of the 1:2 and 2:1 stoichiometry were detected as well.

4.
Molecules ; 26(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770850

RESUMO

FTIR spectroscopy was combined with the matrix isolation technique and quantum chemical calculations with the aim of studying complexes of isocyanic acid with sulfur dioxide. The structures of the HNCO⋯SO2 complexes of 1:1, 1:2 and 2:1 stoichiometry were optimized at the MP2, B3LYPD3, B2PLYPD3 levels of theory with the 6-311++G(3df,3pd) basis set. Five stable 1:1 HNCO⋯SO2 complexes were found. Three of them contain a weak N-H⋯O hydrogen bond, whereas two other structures are stabilized by van der Waals interactions. The analysis of the HNCO/SO2/Ar spectra after deposition indicates that mostly the 1:1 hydrogen-bonded complexes are present in argon matrices, with a small amount of the van der Waals structures. Upon annealing, complexes of the 1:2 stoichiometry were detected, as well.

5.
Phys Chem Chem Phys ; 21(16): 8352-8364, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30958495

RESUMO

Conformational changes of the monomeric safrole (5-(2-propenyl)-1,3-benzodioxole) isolated in low temperature xenon matrices were induced thermally or using narrow-band UV radiation. The rotation of the allyl group taking place in the studied matrices was followed by FTIR spectroscopy. Safrole represents a challenging example of a flexible molecule highlighting the importance of dispersion interactions and anharmonic effects in the structural, spectroscopic and energetic analysis. Structures of the safrole conformers, their energetics and infrared spectra have been calculated using various computational methods ranging from density functional theory (DFT) to coupled cluster (CC). The best theoretical results were obtained by integrating CCSD(T) energies including complete basis set extrapolation and core-valence corrections with B2PLYP-D3 equilibrium structures and hybrid B2PLYP-D3/B3LYP-D3 anharmonic computations for IR spectra and thermodynamics.

6.
Molecules ; 24(18)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500265

RESUMO

Molecular complexes between glycolic acid and nitrogen were studied in a low-temperature argon matrix with FTIR spectroscopy, and supported by MP2 and BLYPD3 calculations. The calculations indicate 11 and 10 stable complex structures at the MP2 and BLYPD3 levels of theories, respectively. However, only one hydrogen-bonded complex structure involving the most stable SSC conformer of glycolic acid was found experimentally, where the nitrogen molecule is bound with the carboxylic OH group of the SSC conformer. The complex shows a rich site structure variation upon deposition of the matrix in different temperatures and upon annealing experiments, which provide interesting prospects for site-selective chemistry.


Assuntos
Argônio/química , Glicolatos/química , Nitrogênio/química , Química Computacional/métodos , Ligação de Hidrogênio , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
7.
Molecules ; 24(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489896

RESUMO

Structural changes of glycolic acid (GA) complex with nitrogen induced by selective overtone excitation of the νOH mode were followed in argon matrices using FTIR spectroscopy. For the most stable SSC1 complex present in different trapping sites directly upon deposition site, selective changes in the νOH region were achieved upon near-infrared irradiation. Simultaneously, new conformers of the GA…N2 complex were formed, giving rise to several sets of bands in the νOH and νC=O regions of the spectra. Both position and intensity of new absorptions appeared to be highly sensitive on the wavelength of radiation used, as well as on the annealing of the matrix. Based on theoretical calculations at different levels of theory, an assignment of the observed bands is proposed and discussed.


Assuntos
Argônio/química , Glicolatos/química , Modelos Moleculares , Estrutura Molecular , Nitrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
8.
Faraday Discuss ; 212(0): 421-441, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30246841

RESUMO

The interaction of weakly bonded complexes of atmospheric constituents with the electromagnetic spectrum available in Earth's atmosphere can induce direct excitation to electronic excited states as well as the excitation of higher vibrational states (overtones) of the electronic ground state. A better understanding of these phenomena requires improved theoretical support by including the anharmonic and vibro-electronic effects on both the band positions and transition intensities. In this work, generalized second-order vibrational perturbation and time-independent Franck-Condon and Herzberg-Teller computations are exploited together with a density functional theory (DFT)/coupled cluster (CC) scheme and its extension to the excited electronic states. Structural and spectroscopic properties are calculated for isolated formaldehyde and its complexes with H2O, CO, SO2 and H2O2, focusing on how small molecules may affect the interactions with NIR to UV irradiation.

9.
Phys Chem Chem Phys ; 17(34): 22431-7, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26252912

RESUMO

Phototransformations of isothiocyanic acid (HNCS) induced by tunable UV laser were studied in low-temperature matrices. Two isomers of the precursor HNCS molecule are formed during UV irradiation of HNCS/Ar and HNCS/N2 samples: thiocyanic acid (HSCN) and isothiofulminic acid (HSNC). In addition, a complex between hydrogen cyanide and a ground state ((3)P) sulfur atom appears at irradiation with wavelength λ < 290 nm. The vibrational bands of the SHCN complex are observed at 3217.0 and 746.5 cm(-1) in Ar and 3223.5 and 764.5/752.0 cm(-1) in N2. At the beginning of irradiation SHCN is produced from the HNCS precursor. At longer times the main sources of the complex are HSCN and HSNC species. In solid nitrogen, HCN monomers are observed besides SHCN, indicating efficient escape of atomic sulfur out of the matrix cage occupied by the precursor. Differences in the extent of the observed processes are discussed in relation to the wavelength of the UV radiation applied and the type of matrices. Results of the computational studies on the SHCN geometry and infrared spectra are presented and compared with experimental data.

10.
J Chem Phys ; 140(10): 105102, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628211

RESUMO

A matrix isolation study of the infrared spectra and structure of anethole (1-methoxy-4-(1-propenyl)benzene) has been carried out, showing the presence of two E conformers (AE1, AE2) of the molecule in the as-deposited matrices. Irradiation using ultraviolet-tunable laser light at 308-307 nm induced conformationally selective phototransformations of these forms into two less stable Z conformers (AZ1, AZ2). The back reactions were also detected upon irradiation at 301 nm. On the whole, the obtained results allow for full assignment of the infrared spectra of all the four experimentally observed anethole isomers and showed that the narrowband UV-induced E-Z photoisomerization is an efficient and selective way to interconvert the two isomers of anethole into each other, with conformational discrimination. Photolysis of anethole was observed as well, with initial methoxyl O-C bond cleavage and formation of CH3 and p-propenylphenoxy (AR) radicals, followed by radical recombination to form 2-methyl-4-propenyl-2,4-cyclohexadienone, which subsequently undergoes ring-opening generating several conformers of long-chain conjugated ketenes. Interpretation of the experimental observations was supported by density functional theory (B3LYP and B2PLYD) calculations.


Assuntos
Anisóis/química , Anisóis/efeitos da radiação , Lasers , Processos Fotoquímicos , Raios Ultravioleta , Absorção , Derivados de Alilbenzenos , Argônio/química , Isomerismo , Cinética , Conformação Molecular/efeitos da radiação , Espectrofotometria Infravermelho
11.
Sci Rep ; 13(1): 15104, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704675

RESUMO

The coronaviruses (CoV) are ubiquitous pathogens found in wide variety of hosts that constantly pose a threat to human and animal health as a result of their enormous capacity to generate genetic changes. Constant monitoring of virus reservoirs can constitute an early-warning tool and control the spread and evolution of the virus. Coronaviruses are common in wild birds, globally, and birds of the Charadriiformes in particular have been demonstrated to be carriers of delta- (dCoV) and gammacoronaviruses (gCoV). In this paper, we present the genetic characterisation of five CoV strains from black-headed (Chroicocephalus ridibundus) and common (Larus canus) gulls. Whole genome sequence analysis showed high similarity of detected dCoV in gulls to previously identified strains from falcon, houbara, pigeon and gulls from Asia (UAE, China). However, phylogenetic analysis revealed bifurcation within a common branch. Furthermore, the accumulation of numerous amino acid changes within the S-protein was demonstrated, indicating further evolution of dCoV within a single gull host. In turn, phylogenetic analysis for the most of the structural and non-structural genes of identified gCoV confirmed that the strain belongs to the duck coronavirus 2714 (DuCoV2714) species within Igacovirus subgenera, while for the spike protein it forms a separate branch not closely related to any gCoV species known to date. The current study provides new and significant insights into the evolution and diversification of circulating coronaviruses in members of Laridae family.


Assuntos
Charadriiformes , Infecções por Coronavirus , Coronavirus , Gammacoronavirus , Animais , Humanos , Deltacoronavirus , Filogenia , Columbidae , Coronavirus/genética , Gammacoronavirus/genética
12.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452362

RESUMO

The revealed prevalence of coronaviruses in wild bird populations in Poland was 4.15% and the main reservoirs were birds from orders Anseriformes and Charadriiformes, with a prevalence of 3.51% and 5.59%, respectively. Gammacoronaviruses were detected more often than deltacoronaviruses, with detection rates of 3.5% and 0.7%, respectively. Gammacoronaviruses were detected in birds belonging to six orders, including Anseriformes, Charadriiformes, Columbiformes, Galliformes, Gruiformes, and Passeriformes, indicating a relatively wide host range. Interestingly, this was the only coronavirus detected in Anseriformes (3.51%), while in Charadriiformes, the prevalence was 3.1%. The identified gammacoronaviruses belonged to the Igacovirus and Brangacovirus subgeneras. Most of these were igacoviruses and formed a common phylogenetic group with a Duck Coronavirus 2714 and two with an Avian Coronavirus/Avian Coronavirus9203, while the viruses from the pigeons formed a distinct "pigeon-like" group, not yet officially represented. The presence of deltacoronaviruses was detected in birds belonging to three orders, Charadriiformes, Galliformes, and Suliformes indicating a narrower host range. Most identified deltacoronaviruses belonged to the Buldecovirus subgenus, while only one belonged to Herdecovirus. Interestingly, the majority of buldecoviruses were identified in gulls, and they formed a distinct phylogenetic lineage not represented by any officially ratified virus species. Another separate group of buldecoviruses, also not represented by the official species, was formed by a virus identified in a common snipe. Only one identified buldecovirus (from common pheasant) formed a group with the ratified species Coronavirus HKU15. The results obtained indicate the high diversity of detected coronaviruses, and thus also the need to update their taxonomy (establishing new representative virus species). The serological studies performed revealed antibodies against an infectious bronchitis virus in the sera of white storks and mallards.


Assuntos
Animais Selvagens/virologia , Biodiversidade , Doenças das Aves/virologia , Infecções por Coronavirus/veterinária , Gammacoronavirus/isolamento & purificação , Animais , Animais Selvagens/classificação , Anseriformes/virologia , Charadriiformes/virologia , Columbiformes/virologia , Infecções por Coronavirus/virologia , Patos/virologia , Galliformes/virologia , Gammacoronavirus/classificação , Gammacoronavirus/genética , Filogenia , Polônia
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 183: 144-149, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28445819

RESUMO

Matrix isolation FTIR spectroscopy has been combined with quantum chemical calculations in the aim to characterize complexes of isothiocyanic acid HNCS with SO2. The geometries of the 1:1, 1:2 and 2:1 complexes were optimized at the MP2 and DFT (B3LYPD3) levels of theory with the 6-311++G(3df,3pd) basis set. Five different HNCS⋯SO2 structures of the 1:1 stoichiometry were optimized. Three of them involve a weak NH⋯O hydrogen bond whereas two other geometries are stabilized by van der Waals interactions of various types. The HNCS/SO2/Ar spectra analysis evidences that at least one of the three hydrogen bonded structure is present after deposition of the matrices whereas the most stable van der Waals HNCS⋯SO2 structure as well as complexes of the 1:2 stoichiometry were detected upon annealing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA