RESUMO
Association studies implicate multiple PDZ domain protein (MPDZ/MUPP1) sequence and/or expression in risk for alcoholism in humans and ethanol withdrawal (EW) in mice, but confirmation has been hindered by the dearth of targeted genetic models. We report the creation of transgenic (MPDZ-TG) and knockout heterozygote (Mpdz(+/-) ) mice, with increased (2.9-fold) and decreased (53%) target expression, respectively. Both models differ in EW compared with wild-type littermates (P ≤ 0.03), providing compelling evidence for an inverse relationship between Mpdz expression and EW severity. Additionally, ethanol consumption is reduced up to 18% (P = 0.006) in Mpdz(+/-) , providing the first evidence implicating Mpdz in ethanol self-administration.
Assuntos
Consumo de Bebidas Alcoólicas/genética , Convulsões por Abstinência de Álcool/genética , Proteínas de Transporte/genética , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Convulsões por Abstinência de Álcool/etiologia , Animais , Técnicas de Silenciamento de Genes , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/genéticaRESUMO
PURPOSE OF REVIEW: Public health interventions that intervene on macrolevel systems hold the promise of reducing childhood obesity at the population level through prevention. The purpose of this review is to highlight some of the recent and best scientific evidence related to public health interventions for the prevention of childhood obesity. We provide a narrative review of scientific evidence for six categories of public health interventions and their impact on childhood obesity: federal nutrition assistance programs, programs implemented in early care and education centers, interventions to support healthy nutrition and physical activity in schools, community-based programs and policies, labeling policies and marketing to children, and taxes on sugar sweetened beverages (SSB). RECENT FINDINGS: Federal nutrition assistance programs have the strongest evidence to support reduction in childhood obesity and serve populations with the highest prevalence of childhood obesity. Other interventions including SSB taxes, community-wide interventions, and interventions at schools and early care and education centers also show significant improvements in child weight status. Overall public health interventions have strong evidence to support widespread implementation in service of reducing childhood obesity rates at the population level. To effectively address the recalcitrant childhood obesity epidemic, multi-pronged solutions are needed. The current evidence for public health obesity interventions is consistent with the paradigm that recognizes the importance of macrolevel systems influences on childhood obesity: interventions that are most effective intervene at macrolevels.
Assuntos
Obesidade Infantil , Bebidas Adoçadas com Açúcar , Humanos , Criança , Obesidade Infantil/epidemiologia , Obesidade Infantil/prevenção & controle , Saúde Pública , Políticas , Estado Nutricional , BebidasRESUMO
The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.
RESUMO
Alcohol use remains a major public health concern and is especially prevalent during adolescence. Adolescent alcohol use has been linked to several behavioral abnormalities in later life, including increased risk taking and impulsivity. Accordingly, when modeled in animals, male rats that had moderate alcohol consumption during adolescence exhibit multiple effects in adulthood, including increased risk taking, altered incentive learning, and greater release of dopamine in the mesolimbic pathway. It has been proposed that alcohol arrests neural development, "locking in" adolescent physiological, and consequent behavioral, phenotypes. Here we examined the feasibility that the elevated dopamine levels following adolescent alcohol exposure are a "locked in" phenotype by testing mesolimbic dopamine release across adolescent development. We found that in male rats, dopamine release peaks in late adolescence, returning to lower levels in adulthood, consistent with the notion that high dopamine levels in adolescence-alcohol-exposed adults were due to arrested development. Surprisingly, dopamine release in females was stable across the tested developmental window. This result raised a quandary that arrested dopamine levels would not differ from normal development in females and, therefore, may not contribute to pathological behavior. However, the aforementioned findings related to risk-based decision-making have only been performed in male subjects. When we tested females that had undergone adolescent alcohol use, we found that neither risk attitude during probabilistic decision-making nor mesolimbic dopamine release was altered. These findings suggest that different developmental profiles of the mesolimbic dopamine system across sexes result in dimorphic susceptibility to alcohol-induced cognitive and motivational anomalies exposure.
RESUMO
Dopamine transmission is implicated in aberrant behaviors associated with substance use disorders. Previous research revealed a causal link between excessive drug consumption and the loss of dopamine signaling to stimuli associated with psychostimulant use. The emerging change in dopamine signaling is specific to stimuli associated with the substance rather than the pharmacological properties of the drug itself. Because the change in dopamine signaling was specific to the associated stimuli and not the pharmacological properties of the substance, we examined if treatment with the dopamine precursor, l-DOPA, alters alcohol and opioid self-administration. Therefore, we trained rats to orally self-administer ethanol or the synthetic opioid fentanyl and found that treating animals with l-DOPA significantly reduced consumption of both alcohol and fentanyl. These data suggest dopamine signaling has a vital role in mediating the amount of drug animals will voluntarily take, across multiple classes of drugs. Importantly, these data are preclinical demonstrations of l-DOPA being utilized as a harm reducing treatment in substance use disorders.
RESUMO
Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.
Assuntos
Neocórtex , Animais , Humanos , Camundongos , Axônios/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Células Piramidais/metabolismo , TranscriptomaRESUMO
Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.
Assuntos
Neurônios GABAérgicos , Interneurônios , Neocórtex , Animais , Humanos , Camundongos , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Técnicas de Patch-ClampRESUMO
BACKGROUND: Mouse lines are being selectively bred in replicate for high blood ethanol concentrations (BECs) achieved after limited access of ethanol (EtOH) drinking early in the circadian dark phase. High Drinking in the Dark-1 (HDID-1) mice are in selected generation S21, and the replicate HDID-2 line in generation S14. Tolerance and withdrawal symptoms are 2 of the 7 diagnostic criteria for alcohol dependence. Withdrawal severity has been found in mouse studies to be negatively genetically correlated with EtOH preference drinking. METHODS: To determine other traits genetically correlated with high DID, we compared naïve animals from both lines with the unselected, segregating progenitor stock, HS/Npt. Differences between HDID-1 and HS would imply commonality of genetic influences on DID and these traits. RESULTS: Female HDID-1 and HDID-2 mice tended to develop less tolerance than HS to EtOH hypothermia after their third daily injection. A trend toward greater tolerance was seen in the HDID males. HDID-1, HDID-2, and control HS lines did not differ in the severity of acute or chronic withdrawal from EtOH as indexed by the handling-induced convulsion (HIC). Both HDID-1 and HDID-2 mice tended to have greater HIC scores than HS regardless of drug treatment. CONCLUSIONS: These results show that tolerance to EtOH's hypothermic effects may share some common genetic control with reaching high BECs after DID, a finding consistent with other data regarding genetic contributions to EtOH responses. Withdrawal severity was not negatively genetically correlated with DID, unlike its correlation with preference drinking, underscoring the genetic differences between preference drinking and DID. HDID lines showed greater basal HIC scores than HS, suggestive of greater central nervous system excitability.
Assuntos
Consumo de Bebidas Alcoólicas/genética , Cruzamento , Etanol/administração & dosagem , Etanol/efeitos adversos , Índice de Gravidade de Doença , Síndrome de Abstinência a Substâncias/genética , Consumo de Bebidas Alcoólicas/patologia , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Tolerância a Medicamentos/genética , Feminino , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Especificidade da Espécie , Síndrome de Abstinência a Substâncias/patologiaRESUMO
BACKGROUND: Mouse lines are being selectively bred in replicate for high blood ethanol concentrations (BECs) achieved after a short period of ethanol (EtOH) drinking early in the circadian dark phase. High Drinking in the Dark-1 (HDID-1) mice were in selected generation S18, and the replicate HDID-2 line in generation S11. METHODS: To determine other traits genetically correlated with high DID, we compared naïve animals from both lines with the unselected, segregating progenitor stock, HS/Npt. Differences between HDID-1 and HS would imply commonality of genetic influences on DID and these traits. RESULTS: HDID-1 mice showed less basal activity, greater EtOH stimulated activity, and greater sensitivity to EtOH-induced foot slips than HS. They showed lesser sensitivity to acute EtOH hypothermia and longer duration loss of righting reflex than HS. HDID-1 and control HS lines did not differ in sensitivity on 2 measures of intoxication, the balance beam and the accelerating rotarod. None of the acute response results could be explained by differences in EtOH metabolism. HDID-2 differed from HS on some, but not all, of the above responses. CONCLUSIONS: These results show that some EtOH responses share common genetic control with reaching high BECs after DID, a finding consistent with other data regarding genetic contributions to EtOH responses.
Assuntos
Consumo de Bebidas Alcoólicas/genética , Cruzamento , Etanol/administração & dosagem , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Etanol/efeitos adversos , Feminino , Hipotermia/induzido quimicamente , Hipotermia/genética , Masculino , Camundongos , Camundongos Transgênicos , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/genética , Especificidade da EspécieRESUMO
Chronic pain affects a significant percentage of the United States population, and available pain medications like opioids have drawbacks that make long-term use untenable. Cannabinoids show promise in the management of pain, but long-term treatment of pain with cannabinoids has been challenging to implement in preclinical models. We developed a voluntary, gelatin oral self-administration paradigm that allowed male and female mice to consume ∆9-tetrahydrocannabinol, cannabidiol, or morphine ad libitum. Mice stably consumed these gelatins over 3 weeks, with detectable serum levels. Using a real-time gelatin measurement system, we observed that mice consumed gelatin throughout the light and dark cycles, with animals consuming less THC-gelatin than the other gelatin groups. Consumption of all three gelatins reduced measures of allodynia in a chronic, neuropathic sciatic nerve injury model, but tolerance to morphine developed after 1 week while THC or CBD reduced allodynia over three weeks. Hyperalgesia gradually developed after sciatic nerve injury, and by the last day of testing, THC significantly reduced hyperalgesia, with a trend effect of CBD, and no effect of morphine. Mouse vocalizations were recorded throughout the experiment, and mice showed a large increase in ultrasonic, broadband clicks after sciatic nerve injury, which was reversed by THC, CBD, and morphine. This study demonstrates that mice voluntarily consume both cannabinoids and opioids via gelatin, and that cannabinoids provide long-term relief of chronic pain states. In addition, ultrasonic clicks may objectively represent mouse pain status and could be integrated into future pain models.
Assuntos
Canabinoides/farmacologia , Hiperalgesia/prevenção & controle , Neuralgia/prevenção & controle , Administração Oral , Animais , Canabidiol/farmacologia , Canabinoides/administração & dosagem , Dronabinol/farmacologia , Tolerância a Medicamentos , Feminino , Hiperalgesia/complicações , Masculino , Camundongos , Morfina/farmacologia , Neuralgia/complicações , Nervo Isquiático/lesões , Autoadministração , Vocalização Animal/efeitos dos fármacosRESUMO
Few preclinical approaches are available to study the health impact of voluntary consumption of edibles containing the psychoactive drug Δ9-tetrahydrocannabinol (THC). We developed and validated such approach by measuring voluntary oral consumption of THC-containing gelatin by rats and used it to study if and how THC consumption during adolescence impacts adult behavior. We found that adolescent rats of both sexes consumed enough THC to trigger acute hypothermia, analgesic, and locomotor responses, and that 15 days of access to THC-gelatin in adolescence resulted in the down-regulation of cannabinoid 1 receptors (CB1Rs) in adulthood in a sex and brain area specific manner. Remarkably, THC consumption by adolescent male rats and not female rats led to impaired Pavlovian reward-predictive cue behaviors in adulthood consistent with a male-specific loss of CB1R-expressing vGlut-1 synaptic terminals in the ventral tegmental area (VTA). Thus, voluntary oral consumption of THC during adolescence is associated with sex-dependent behavioral impairment in adulthood.
Assuntos
Dronabinol/farmacologia , Receptor CB1 de Canabinoide/biossíntese , Recompensa , Administração Oral , Adolescente , Fatores Etários , Animais , Condicionamento Clássico/efeitos dos fármacos , Sinais (Psicologia) , Regulação para Baixo/efeitos dos fármacos , Dronabinol/administração & dosagem , Feminino , Humanos , Masculino , Ratos , Fatores Sexuais , Tegmento Mesencefálico/metabolismoRESUMO
According to recent WHO reports, alcohol remains the number one substance used and abused by adolescents, despite public health efforts to curb its use. Adolescence is a critical period of biological maturation where brain development, particularly the mesocorticolimbic dopamine system, undergoes substantial remodeling. These circuits are implicated in complex decision making, incentive learning and reinforcement during substance use and abuse. An appealing theoretical approach has been to suggest that alcohol alters the normal development of these processes to promote deficits in reinforcement learning and decision making, which together make individuals vulnerable to developing substance use disorders in adulthood. Previously we have used a preclinical model of voluntary alcohol intake in rats to show that use in adolescence promotes risky decision making in adulthood that is mirrored by selective perturbations in dopamine network dynamics. Further, we have demonstrated that incentive learning processes in adulthood are also altered by adolescent alcohol use, again mirrored by changes in cue-evoked dopamine signaling. Indeed, we have proposed that these two processes, risk-based decision making and incentive learning, are fundamentally linked through dysfunction of midbrain circuitry where inputs to the dopamine system are disrupted by adolescent alcohol use. Here, we test the behavioral predictions of this model in rats and present the findings in the context of the prevailing literature with reference to the long-term consequences of early-life substance use on the vulnerability to develop substance use disorders. We utilize an impulsive choice task to assess the selectivity of alcohol's effect on decision-making profiles and conditioned reinforcement to parse out the effect of incentive value attribution, one mechanism of incentive learning. Finally, we use the differential reinforcement of low rates of responding (DRL) task to examine the degree to which behavioral disinhibition may contribute to an overall decision-making profile. The findings presented here support the proposition that early life alcohol use selectively alters risk-based choice behavior through modulation of incentive learning processes, both of which may be inexorably linked through perturbations in mesolimbic circuitry and may serve as fundamental vulnerabilities to the development of substance use disorders.
RESUMO
Acute ethanol-induced locomotor stimulation and ethanol-induced locomotor sensitization are two behavioral assays thought to model the rewarding effects of ethanol. Recent evidence suggests that GS39783, a GABA(B) positive allosteric modulator, may be effective at reducing both the rewarding and reinforcing effects of several drugs of abuse, including ethanol. The goal of this study was to determine if GS39783 was capable of altering acute ethanol-induced stimulation, and the induction and expression of ethanol-induced locomotor sensitization, without effecting basal locomotion levels. Several doses of GS39783 (ranging from 0 to 100 mg/kg, depending on experiment) were tested on adult male DBA/2J mice in four experiments using 3-day basal locomotion and acute ethanol stimulation paradigms, and 14-day induction and expression of ethanol sensitization paradigms. The results of experiment 1 are in agreement with current literature, suggesting that 30 mg/kg doses of GS39783 and lower do not alter basal locomotor activity. In experiment 2, we found that GS39783 significantly decreased acute ethanol stimulation, but only at the 30 mg/kg dose, supporting our hypothesis and other publications suggesting that GABA(B) receptors modulate acute ethanol stimulation. Contrary to our hypothesis, GS39783 did not alter the expression of locomotor sensitization. Additionally, repeated administration of GS39783 in conjunction with ethanol unexpectedly potentiated ethanol-induced locomotor sensitization. Further study of GS39783 is warranted as it may be a more tolerable treatment for alcoholism than full agonists, due to its behavioral efficacy at doses that lack sedative side effects. Our results add to current literature suggesting that the GABA(B) receptor system is indeed involved in the modulation of ethanol-induced locomotor stimulation and sensitization.