RESUMO
The photodynamic properties of a series of non-halogenated, dibrominated and diiodinated BODIPYs with a phthalimido or amino end modification on the phenoxypentyl and phenoxyoctyl linker in the meso position were investigated. Halogen substitution substantially increased the singlet oxygen production based on the heavy atom effect. This increase was accompanied by a higher photodynamic activity against skin melanoma cancer cells SK-MEL-28, with the best compound reaching an EC50 = 0.052 ± 0.01 µM upon light activation. The dark toxicity (toxicity without light activation) of all studied dyes was not detected up to the solubility limit in cell culture medium (10 µM). All studied BODIPY derivatives were predominantly found in adiposomes (lipid droplets) with further lower signals colocalized in either endolysosomal vesicles or the endoplasmic reticulum. A detailed investigation of cell death indicated that the compounds act primarily through the induction of apoptosis. In conclusion, halogenation in the 2,6 position of BODIPY dyes is crucial for the efficient photodynamic activity of these photosensitizers.
RESUMO
Retinoblastoma is the most common intraocular eye tumor of the pediatric age. It develops on account of a mutation on chromosome 13 in the 13q14 locus. New studies additionally demonstrated changes in the expression of other genes classified as oncogenes and suppressor genes. The tumor occurs in two forms--heritable (genetic) and non-heritable (non-genetic, sporadic). The most common clinical features of retinoblastoma are leucocoria and strabismus, however, they are not that specific because may also occur in several other eye diseases, such as Coats disease and toxocarosis. The diagnosis of retinoblastoma requires an indirect ophthalmoscopic examination. In addition, imaging techniques such as ultrasonography (USG), magnetic resonance imaging (MRI) and, less commonly, computer tomography (CT) are used. Biopsy is contraindicated because of the risk of spreading cancer cells to the adjacent tissues and possibility of a metastasis development. Currently, the stage of the disease and the therapy prognosis are classified by the International Intraocular Retinoblastoma Classification. At present, chemotherapy is the standard treatment of retinoblastoma. During the last decades new therapies have been introduced, such as transpupillary thermotherapy (TTT), cryotherapy, brachytherapy, limiting the use of teletherapy and the number of performed enucleations. Patients with therapy-induced remission of retinoblastoma should undergo routine examinations because of the increased risk of subsequent neoplasms and other possible complications.
Assuntos
Patrimônio Genético , Neoplasias da Retina/genética , Retinoblastoma/genética , Braquiterapia , Criança , Pré-Escolar , Crioterapia , Genes Neoplásicos , Humanos , Interpretação de Imagem Assistida por Computador , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Oftalmoscopia , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/terapia , Retinoblastoma/diagnóstico , Retinoblastoma/terapia , UltrassonografiaRESUMO
Positronium is abundantly produced within the molecular voids of a patient's body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
Assuntos
Neoplasias Encefálicas , Encéfalo , Glioblastoma , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologiaRESUMO
PURPOSE: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS: The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.
Assuntos
Terapia com Prótons , Prótons , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons , Terapia com Prótons/métodos , Imagens de Fantasmas , Método de Monte CarloRESUMO
Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.
RESUMO
In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.
RESUMO
OBJECTIVE: The Jagiellonian PET (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach: Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualised in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results: Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r^2 = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance: The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment. .
RESUMO
This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.
Assuntos
Ecossistema , Software , Simulação por Computador , Método de Monte Carlo , FísicaRESUMO
OBJECTIVE: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS: ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.
RESUMO
Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers and industrials to design, optimize, understand and create innovative emission tomography systems. In this paper, we reviewed the recent developments that have been proposed to simulate modern detectors and provide a comprehensive report on imaging systems that have been simulated and evaluated in GATE. Additionally, some methodological developments that are not specific for imaging but that can improve detector modeling and provide computation time gains, such as Variance Reduction Techniques and Artificial Intelligence integration, are described and discussed.
Assuntos
Inteligência Artificial , Software , Simulação por Computador , Método de Monte Carlo , Tomografia Computadorizada por Raios XRESUMO
In vivo assessment of cancer and precise location of altered tissues at initial stages of molecular disorders are important diagnostic challenges. Positronium is copiously formed in the free molecular spaces in the patient's body during positron emission tomography (PET). The positronium properties vary according to the size of inter- and intramolecular voids and the concentration of molecules in them such as, e.g., molecular oxygen, O2; therefore, positronium imaging may provide information about disease progression during the initial stages of molecular alterations. Current PET systems do not allow acquisition of positronium images. This study presents a new method that enables positronium imaging by simultaneous registration of annihilation photons and deexcitation photons from pharmaceuticals labeled with radionuclides. The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue is demonstrated. It is anticipated that positronium imaging will substantially enhance the specificity of PET diagnostics.
RESUMO
A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.
Assuntos
Benzoxazóis/química , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Contagem de Cintilação/instrumentação , Estirenos/química , Tomografia , Luz , Peso Molecular , Polimerização , Espectrometria de Fluorescência , Temperatura , Fatores de TempoRESUMO
Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10-40 µM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.