Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microsc Microanal ; 25(4): 1004-1016, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31106722

RESUMO

The process of autophagy has been detected in the midgut epithelium of four millipede species: Julus scandinavius, Polyxenus lagurus, Archispirostreptus gigas, and Telodeinopus aoutii. It has been examined using transmission electron microscopy (TEM), which enabled differentiation of cells in the midgut epithelium, and some histochemical methods (light microscope and fluorescence microscope). While autophagy appeared in the cytoplasm of digestive, secretory, and regenerative cells in J. scandinavius and A. gigas, in the two other species, T. aoutii and P. lagurus, it was only detected in the digestive cells. Both types of macroautophagy, the selective and nonselective processes, are described using TEM. Phagophore formation appeared as the first step of autophagy. After its blind ends fusion, the autophagosomes were formed. The autophagosomes fused with lysosomes and were transformed into autolysosomes. As the final step of autophagy, the residual bodies were detected. Autophagic structures can be removed from the midgut epithelium via, e.g., atypical exocytosis. Additionally, in P. lagurus and J. scandinavius, it was observed as the neutralization of pathogens such as Rickettsia-like microorganisms. Autophagy and apoptosis ca be analyzed using TEM, while specific histochemical methods may confirm it.


Assuntos
Apoptose , Artrópodes , Autofagia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Animais , Lisossomos/ultraestrutura , Microscopia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fagossomos/ultraestrutura , Rickettsia/imunologia
2.
Protoplasma ; 255(1): 43-55, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28612274

RESUMO

The midgut of millipedes is composed of a simple epithelium that rests on a basal lamina, which is surrounded by visceral muscles and hepatic cells. As the material for our studies, we chose Telodeinopus aoutii (Demange, 1971) (Kenyan millipede) (Diplopoda, Spirostreptida), which lives in the rain forests of Central Africa. This commonly reared species is easy to obtain from local breeders and easy to culture in the laboratory. During our studies, we used transmission and scanning electron microscopes and light and fluorescent microscopes. The midgut epithelium of the species examined here shares similarities to the structure of the millipedes analyzed to date. The midgut epithelium is composed of three types of cells-digestive, secretory, and regenerative cells. Evidence of three types of secretion have been observed in the midgut epithelium: merocrine, apocrine, and microapocrine secretion. The regenerative cells of the midgut epithelium in millipedes fulfill the role of midgut stem cells because of their main functions: self-renewal (the ability to divide mitotically and to maintain in an undifferentiated state) and potency (ability to differentiate into digestive cells). We also confirmed that spot desmosomes are common intercellular junctions between the regenerative and digestive cells in millipedes.


Assuntos
Artrópodes/ultraestrutura , Epitélio/metabolismo , Microscopia Eletrônica de Varredura/métodos , Animais , Regeneração
3.
Micron ; 68: 130-139, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25464151

RESUMO

The midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata, is composed of digestive, secretory and regenerative cells. In L. forficatus, the autophagy occurred only in the cytoplasm of the digestive cells as a sporadic process, while in S. cingulata, it occurred intensively in the digestive, secretory and regenerative cells of the midgut epithelium. In both of the species that were analyzed, this process proceeded in a continuous manner and did not depend on the day/night cycle. Ultrastructural analysis showed that the autophagosomes and autolysosomes were located mainly in the apical and perinuclear cytoplasm of the digestive cells in L. forficatus. However, in S. cingulata, the entire cytoplasm was filled with autophagosomes and autolysosomes. Initially the membranes of phagophores surround organelles during autophagosome formation. Autolysosomes result from the fusion of autophagosomes and lysosomes. Residual bodies which are the last stage of autophagy were released into the midgut lumen due to necrosis. Autophagy in the midgut epithelia that were analyzed was confirmed using acid phosphatase and mono-dansyl-cadaverine stainings.


Assuntos
Artrópodes/fisiologia , Autofagia , Ritmo Circadiano , Células Epiteliais/fisiologia , Fotoperíodo , Animais , Artrópodes/citologia , Citoplasma/ultraestrutura , Células Epiteliais/ultraestrutura , Trato Gastrointestinal/fisiologia , Mucosa Intestinal/fisiologia , Lisossomos/ultraestrutura , Microscopia Eletrônica de Transmissão , Fagossomos/ultraestrutura
4.
Protoplasma ; 252(5): 1387-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25666305

RESUMO

Cell death in the endodermal region of the digestive tract of the blood-feeding leech Piscicola geometra was analyzed using light and transmission electron microscopes and the fluorescence method. Sexually mature specimens of P. geometra were bred under laboratory conditions and fed on Danio rerio. After copulation, the specimens laid cocoons. The material for our studies were non-feeding juveniles collected just after hatching, non-feeding adult specimens, and leeches that had been fed with fish blood (D. rerio) only once ad libitum. The fed leeches were prepared for our studies during feeding and after 1, 3, 7, and 14 days (not sexually mature specimens) and some weeks after feeding (the sexually mature). Autophagy in all regions of the endodermal part of the digestive system, including the esophagus, the crop, the posterior crop caecum (PCC), and the intestine was observed in the adult non-feeding and feeding specimens. In fed specimens, autophagy occurred at very high levels--in 80 to 90 % of epithelial cells in all four regions. In contrast, in adult specimens that did not feed, this process occurred at much lower levels--about 10 % (esophagus and intestine) and about 30 % (crop and PCC) of the midgut epithelial cells. Apoptosis occurred in the feeding adult specimens but only in the crop and PCC. However, it was absent in the non-feeding adult specimens and the specimens that were collected during feeding. Moreover, neither autophagy nor apoptosis were observed in the juvenile, non-feeding specimens. The appearance of autophagy and apoptosis was connected with feeding on toxic blood. We concluded that autophagy played the role of a survival factor and was involved in the protection of the epithelium against the products of blood digestion. Quantitative analysis was prepared to determine the number of autophagic and apoptotic cells.


Assuntos
Apoptose , Células Epiteliais/fisiologia , Sanguessugas/ultraestrutura , Animais , Autofagia , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Trato Gastrointestinal/ultraestrutura , Mucosa Intestinal/ultraestrutura , Período Pós-Prandial
5.
Arthropod Struct Dev ; 43(5): 477-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038427

RESUMO

The midgut epithelia of the millipedes Polyxenus lagurus, Archispirostreptus gigas and Julus scandinavius were analyzed under light and transmission electron microscopies. In order to detect the proliferation of regenerative cells, labeling with BrdU and antibodies against phosphohistone H3 were employed. A tube-shaped midgut of three millipedes examined spreads along the entire length of the middle region of the body. The epithelium is composed of digestive, secretory and regenerative cells. The digestive cells are responsible for the accumulation of metals and the reserve material as well as the synthesis of substances, which are then secreted into the midgut lumen. The secretions are of three types - merocrine, apocrine and microapocrine. The oval or pear-like shaped secretory cells do not come into contact with the midgut lumen and represent the closed type of secretory cells. They possess many electron-dense granules (J. scandinavius) or electron-dense granules and electron-lucent vesicles (A. gigas, P. lagurus), which are accompanied by cisterns of the rough endoplasmic reticulum. The regenerative cells are distributed individually among the basal regions of the digestive cells. The proliferation and differentiation of regenerative cells into the digestive cells occurred in J. scandinavius and A. gigas, while these processes were not observed in P. lagurus. As a result of the mitotic division of regenerative cells, one of the newly formed cells fulfills the role of a regenerative cell, while the second one differentiates into a digestive cell. We concluded that regenerative cells play the role of unipotent midgut stem cells.


Assuntos
Artrópodes/fisiologia , Artrópodes/ultraestrutura , Animais , República Tcheca , Sistema Digestório/metabolismo , Sistema Digestório/ultraestrutura , Epitélio/metabolismo , Epitélio/ultraestrutura , Células-Tronco/fisiologia , Células-Tronco/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA