Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 154(5): 3285-3309, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37983297

RESUMO

This article investigates the interactions of two-plane waves in weakly nonlinear elastic solids containing quadratic and cubic nonlinearity. The analytical solutions for generated combined harmonic waves are derived using the Green's function approach applied to a generated system of quasi-linear equations of motion. Wave mixing solutions are obtained and include shape functions that permit closed-form solutions for a variety of interaction geometries. An explicit example is highlighted for a spherical interaction volume assuming isotropic elastic constants. Several parameters of the generated field after mixing are analyzed including resonant and nonresonant mixing, the role of interaction angle, and the frequencies of the two incident waves. Wave mixing offers the potential for sensing localized elastic nonlinearity and the present model can be used to help design experimental configurations.

2.
J Acoust Soc Am ; 151(2): 1294, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35232066

RESUMO

This article reconsiders traditional topics in nonlinear elastic waves and nonlinear ultrasonics. Herein, higher-order coupling between finite initial deformation and finite amplitude waves are considered. To allow for coupling, a large-on-large deformation model is developed and used to generate the equations of motion relative to the deformed and undeformed material configurations. Thus, the equations of motion provide a single setting to describe topics in nonlinear elastic waves such as acoustoelasticity, second harmonic generation, and coupling relations between these topics. The model is evaluated to recover the traditional linearized acoustoelastic relations and predicted second harmonic amplitudes. Then, the so-called large acoustoelasticity theory is developed for anisotropic materials with specific results given for isotropic materials. Last, the stress influence on second harmonic generation is presented.

3.
J Acoust Soc Am ; 150(4): 2624, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717470

RESUMO

Efficient nondestructive qualification of additively manufactured (AM) metallic parts is vital for the current and future adoption of AM parts throughout several industries. Resonant ultrasound spectroscopy (RUS) is a promising method for the qualification and characterization of AM parts. Although the adoption of RUS in this setting is emerging, the influence of residual stress and texture, which are both very common in AM parts, is not well understood. In this article, a stress- and texture-dependent constitutive relation is used to study the influence on free vibrational behavior in a RUS setting. The results that follow from using the Rayleigh-Ritz method and finite element analysis suggest that residual stress and texture have a significant impact on the resonance frequencies and mode shapes. These results support the potential of using RUS to sense texture and residual stress in AM parts. Additionally, these results suggest that RUS measurements could be misinterpreted when the stress and texture are not accounted for, which could lead to a false positive/negative diagnosis when qualifying AM parts.

4.
J Acoust Soc Am ; 150(4): 2409, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717444

RESUMO

Metal additive manufacturing is a fabrication method that forms a part by fusing layers of powder to one another. An energy source, such as a laser, is commonly used to heat the metal powder sufficiently to cause a molten pool to form, which is known as the melt pool. The melt pool can exist in the conduction or the keyhole mode where the material begins to rapidly evaporate. The interaction between the laser and the material is physically complex and difficult to predict or measure. In this article, high-speed X-ray imaging was combined with immersion ultrasound to obtain synchronized measurements of stationary laser-generated melt pools. Furthermore, two-dimensional and three-dimensional finite-element simulations were conducted to help explain the ultrasonic response in the experiments. In particular, the time-of-flight and amplitude in pulse-echo configuration were observed to have a linear relationship to the depth of the melt pool. These results are promising for the use of ultrasound to characterize the melt pool behavior and for finite-element simulations to aid in interpretation.

5.
J Acoust Soc Am ; 147(2): 757, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32113291

RESUMO

The spatial correlation properties of ultrasonic backscattering signals in random media have important implications. For example, they can be used for microstructural characterization and flaw detection in engineering materials. However, the traditional spatial correlation coefficient (SCC) is only a leading order quantity that does not capture the true spatial correlations of random media. This is caused by neglecting confounding variables such as non-zero means or other non-zero odd-order moments. Here, the SCC is generalized from zeroth- to general-order through partial cross-correlation analysis. A series of indicators are defined to quantify the SCC curve at zero time lag, and the maximum time shift curve, which are both functions of lateral separation between two sensor positions. A stainless-steel specimen and a focused ultrasonic transducer are used to verify the method. Scattering measurements show that the higher-order SCC can consistently capture spatial correlations whereas the zeroth-order SCC is inadequate. The zeroth-order SCC is shown to predict a step size that can be more than six times too large. Thus, the present method can provide better understanding of statistical correlations and conditions to measure uncorrelated backscattering signals.

6.
J Acoust Soc Am ; 146(6): 4183, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893712

RESUMO

Traditionally, the acoustoelastic effect refers to the influence of stress in a solid on an elastic wave's phase velocity. Since the phase velocity can be represented by the real part of the complex wave number, a natural question arises regarding the effect of stress on the imaginary part or dissipation of the wave. In this article, the influence of pressure on the elastic wave's attenuation in polycrystalline materials is modeled. The constitutive behavior of an initially stressed solid is coupled into Weaver's scattering-based attenuation model [J. Mech. Phys. Solids 38, 55-86 (1990)]. As a result, the pressure-dependent longitudinal and shear wave attenuation coefficients are unveiled. As the traditional stress-free attenuation coefficients depend on the degree of single-crystal elastic anisotropy, it is shown that the pressure influence on attenuation depends on the anisotropy of the single-crystal's third-order or nonlinear elastic constants. Analysis of the model indicates linkages between pressure derivatives of velocity and attenuation to the material's linear and nonlinear elastic anisotropy, crystal structure, and type of atomic bonding.

7.
J Acoust Soc Am ; 145(2): EL142, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30823796

RESUMO

Ultrasound is a prominent nondestructive testing modality for the detection, localization, and sizing of defects in engineering materials. Often, inspectors analyze ultrasonic waveforms to determine if echoes, which stem from the scattering of ultrasound from a defect, exceed a threshold value. In turn, the initial selection of the threshold value is critical. In this letter, a time-dependent threshold or upper bound for the signal envelope is developed based on the statistics governing the scattering of ultrasound from microstructure. The utility of the time-dependent threshold is demonstrated using experiments conducted on sub-wavelength artificial defects. The results are shown to enhance current nondestructive inspection practices.

8.
J Acoust Soc Am ; 141(6): 4756, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28679268

RESUMO

This article considers the scattering of harmonics stemming from the interaction of a primary wave with a heterogeneous and elastically nonlinear inclusion present in an otherwise linearly elastic host medium. The elastodynamic equations of motion are derived for general elastic anisotropy up to a third-order in displacement nonlinearity (cubic nonlinearity). The method of successive approximations is applied in order to decouple the equations of motion into a linear system of equations. The linear equations permit the use of Green's functions to obtain the scattering amplitudes from an arbitrarily shaped inclusion. General forms of the scattering amplitudes are given as functions of scattering-based quadratic and cubic acoustic nonlinearity parameters. Shape factors are offered for some simple geometries in order to arrive at closed-form solutions. An explicit example is given in the case of a spherically shaped inclusion with isotropic elastic moduli. The influence of the second-, third-, and fourth-order elastic stiffnesses, primary and scattered wave mode types, and scattering angles are highlighted. Potential experimental techniques, based on the present scattering model, offer an alternative method of probing the nonlinear elastic properties of materials.

9.
J Acoust Soc Am ; 141(3): 1804, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28372077

RESUMO

This article reevaluates two foundational models for bulk ultrasonic wave propagation in polycrystals. A decoupling of real and imaginary parts of the effective wave number permits a simple iterative method to obtain longitudinal and shear wave attenuation constants and phase velocity relations. The zeroth-order solution is that of Weaver [J. Mech. Phys. Solids 38, 55-86 (1990)]. Continued iteration converges to the unified theory solution of Stanke and Kino [J. Acoust. Soc. Am. 75, 665-681 (1984)]. The converged solution is valid for all frequencies. The iterative method mitigates the need to solve a nonlinear, complex-valued system of equations, which makes the models more robust and accessible to researchers. An analysis of the variation between the solutions is conducted and is shown to be proportional to the degree of inhomogeneity in the polycrystal.

10.
J Acoust Soc Am ; 141(4): 2633, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28464650

RESUMO

A lower bound to the longitudinal and shear attenuation ratio was recently derived for viscoelastic materials [Norris, J. Acoust. Soc. Am. 141, 475-479 (2017)]. This letter provides proof that a similar bound is present for low-frequency attenuation constants of polycrystals caused by grain scattering. An additional upper bound to the attenuation ratio is unveiled. Both bounds are proven to be combinations of wave speeds. The upper and lower bounds correspond with the vanishing of the second-order anisotropy of the bulk and shear modulus, respectively. A link to the polycrystalline Poisson's ratio is highlighted, which completely bounds the attenuation ratio. An analysis of 2176 crystalline materials was conducted to further verify the bounds.

11.
J Acoust Soc Am ; 142(2): EL224, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28863600

RESUMO

This letter considers the combined effects of quadratic and cubic nonlinearity on plane wave propagation in generally anisotropic elastic solids. Displacement solutions are derived that represent the fundamental, second-, and third-harmonic waves. In arriving at the solutions, the quadratic and cubic nonlinearity parameters for generally anisotropic materials are defined. The effects of quadratic and cubic nonlinearity are shown to influence the amplitude and phase of the fundamental wave. In addition, the phase of the third-harmonic depends on a simple combination of the quadratic and cubic nonlinearity parameters. Nonlinearity parameters are given explicitly for materials having isotropic and cubic symmetry. Lastly, acoustic nonlinearity surfaces are introduced, which illustrate the nonlinearity parameters as a function of various propagation directions in anisotropic materials.

12.
J Acoust Soc Am ; 139(2): 811-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26936563

RESUMO

Stress-dependent elastic moduli of polycrystalline materials are used in a statistically based model for the scattering of ultrasonic waves from randomly oriented grains that are members of a stressed polycrystal. The stress is assumed to be homogeneous and can be either residual or generated from external loads. The stress-dependent elastic properties are incorporated into the definition of the differential scattering cross-section, which defines how strongly an incident wave is scattered into various directions. Nine stress-dependent differential scattering cross-sections or scattering coefficients are defined to include all possibilities of incident and scattered waves, which can be either longitudinal or (two) transverse wave types. The evaluation of the scattering coefficients considers polycrystalline aluminum that is uniaxially stressed. An analysis of the influence of incident wave propagation direction, scattering direction, frequency, and grain size on the stress-dependency of the scattering coefficients follows. Scattering coefficients for aluminum indicate that ultrasonic scattering is much more sensitive to a uniaxial stress than ultrasonic phase velocities. By developing the stress-dependent scattering properties of polycrystals, the influence of acoustoelasticity on the amplitudes of waves propagating in stressed polycrystalline materials can be better understood. This work supports the ongoing development of a technique for monitoring and measuring stresses in metallic materials.

13.
J Acoust Soc Am ; 140(3): EL236, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914415

RESUMO

A procedure is developed for self-calibration of broadband, spherically focused ultrasonic transducers based on reciprocity. The input and received signals are measured in a pulse-echo configuration. These signals are used in conjunction with a multi-Gaussian beam model to obtain the electromechanical transfer function of the transducer. This calibration procedure is advantageous because it reduces the experimental configuration to a single transducer and a reflector. Experimental results indicate that the transfer function is insensitive to on-axis reflector placement. This result supports the feasibility of integrating the calibration procedure into actual testing in some situations.

14.
J Acoust Soc Am ; 140(3): 1570, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914376

RESUMO

Elastic wave scattering is used to study polycrystalline media for a wide range of applications. Received signals, which include scattering from the randomly oriented grains comprising the polycrystal, contain information from which useful microstructural parameters may often be inferred. Recently, a mode-converted diffuse ultrasonic scattering model was developed for evaluating the scattered response of a transverse wave from an incident longitudinal wave in a polycrystalline medium containing equiaxed single-phase grains with cubic elastic symmetry. In this article, that theoretical mode-converted scattering model is modified to account for grain elongation within the sample. The model shows the dependence on scattering angle relative to the grain axis orientation. Experimental measurements were performed on a sample of 7475-T7351 aluminum using a pitch-catch transducer configuration. The results show that the mode-converted scattering can be used to determine the dimensions of the elongated grains. The average grain shape determined from the experimental measurements is compared with dimensions extracted from electron backscatter diffraction, an electron imaging technique. The results suggest that mode-converted diffuse ultrasonic scattering has the potential to quantify detailed information about grain microstructure.

15.
J Acoust Soc Am ; 138(4): 2613-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26520343

RESUMO

In this article, the second-order statistics of the elastic moduli of randomly oriented grains in a polycrystal are derived for the case when an initial stress is present. The initial stress can be either residual stress or stresses generated from external loading. The initial stress is shown to increase or decrease the variability of the grain's elastic moduli from the average elastic moduli of the polycrystal. This variation in the elastic properties of the individual grains causes acoustic scattering phenomenon in polycrystalline materials to become stress-dependent. The influence of the initial stress on scattering is shown to be greater than the influence on acoustic phase velocities, which defines the acoustoelastic effect. This work helps the development of scattering based tools for the nondestructive analysis of material stresses in polycrystals.

16.
J Acoust Soc Am ; 137(6): 3272-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093417

RESUMO

This article considers polycrystalline materials with macroscopic elastic anisotropy and the effect of the anisotropy on the quadratic nonlinearity parameter used to describe second harmonic generation in solids. The polycrystal is assumed to have transversely isotropic elastic symmetry, which leads to a directional dependence of the nonlinearity parameters. Additionally, the anisotropy leads to second harmonic generation from an input shear wave. Estimates of the longitudinal and shear wave nonlinearity parameters are given as a function of single-crystal elastic constants, macroscopic anisotropy constants, and propagation direction. An inverse model is presented that relates measured nonlinearity parameters to the macroscopic anisotropy constants. The estimates of the nonlinearity parameters can be used to approximate the damage-free or baseline nonlinearity parameter of structural components, which helps the effort toward absolute measures of material damage.

17.
J Acoust Soc Am ; 137(6): EL476-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093458

RESUMO

This letter provides a theoretical extension to the elastic properties of polycrystals in order to describe elastic wave scattering from grain boundaries. The extension allows the longitudinal and shear attenuation coefficients for scattering to be derived and is valid for polycrystals containing crystallites of any symmetry class. Attenuation curves are given for polycrystalline SiO2, ZrO2, and SnF2, which contain monoclinic crystallites. This work will allow ultrasonic techniques to be applied to new classes of materials containing nontrivial microstructures.

18.
J Acoust Soc Am ; 138(3): 1498-507, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26428787

RESUMO

A linear relation between the strains and stresses of a crystallite within a polycrystal is used to homogenize the polycrystal's elastic properties. The homogenization parallels the self-consistent method that is used for estimating the polycrystal's linear elastic properties. Acoustoelasticity for a macroscopically isotropic polycrystal is then formulated using a homogenized constitutive equation with initial stress. Simple expressions are given for the phase velocities and polarization directions for a uniaxially stressed polycrystal. The present model is compared with the model of Man and Paroni [J. Elast. 45, 91-116 (1996)]. Strong anisotropy of the crystallite elastic constants causes the present model to differ noticeably from the model of Man and Paroni.


Assuntos
Acústica , Modelos Químicos , Cristalização , Elasticidade , Estresse Mecânico
19.
J Acoust Soc Am ; 134(2): 982-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927097

RESUMO

Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.


Assuntos
Som , Ultrassom/métodos , Simulação por Computador , Cristalização , Difusão , Elasticidade , Desenho de Equipamento , Modelos Teóricos , Movimento (Física) , Análise Numérica Assistida por Computador , Espalhamento de Radiação , Aço/química , Fatores de Tempo , Transdutores , Ultrassom/instrumentação
20.
JASA Express Lett ; 3(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656146

RESUMO

This letter reports on the integration of eight ultrasonic transducers into a build substrate for individual in-process monitoring of eight parts fabricated using powder bed fusion additive manufacturing. Ultrasound is shown to be able to sense poor fusion of parts to the substrate and also sensitivity to porosity. This technique demonstrates the utility of ultrasound as one of a few techniques able to interrogate the volume of additively manufactured parts during the process. Additionally, the ability to measure several parts during a single build can be used for efficient process parameter development studies, as the ultrasonic measurements can offer rapid information about part quality and integrity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA