Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 193(15): 4037-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21642452

RESUMO

Desulfovibrio africanus strain Walvis Bay is an anaerobic sulfate-reducing bacterium capable of producing methylmercury (MeHg), a potent human neurotoxin. The mechanism of methylation by this and other organisms is unknown. We present the 4.2-Mb genome sequence to provide further insight into microbial mercury methylation and sulfate-reducing bacteria.


Assuntos
Desulfovibrio africanus/genética , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Compostos de Metilmercúrio/metabolismo , Sequência de Bases , Desulfovibrio africanus/isolamento & purificação , Desulfovibrio africanus/metabolismo , Metilação , Dados de Sequência Molecular , Namíbia
3.
Appl Environ Microbiol ; 77(12): 3938-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21515733

RESUMO

We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus.


Assuntos
Desulfovibrio desulfuricans/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Sulfatos/metabolismo , Anaerobiose , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Desulfovibrio desulfuricans/classificação , Desulfovibrio desulfuricans/genética , Desulfovibrio desulfuricans/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Fumaratos/metabolismo , Sedimentos Geológicos/microbiologia , Maryland , Metilação , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Mol Pharmacol ; 71(1): 38-46, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17012619

RESUMO

The imidazopyridine zolpidem (Ambien) is one of the most commonly prescribed sleep aids in the United States (Rush, 1998). Similar to classic benzodiazepines (BZDs), zolpidem binds at the extracellular N-terminal alpha/gamma subunit interface of the GABA-A receptor (GABAR). However, zolpidem differs significantly from classic BZDs in chemical structure and neuropharmacological properties. Thus, classic BZDs and zolpidem are likely to have different requirements for high-affinity binding to GABARs. To date, three residues--gamma2Met57, gamma2Phe77, and gamma2Met130--have been identified as necessary for high-affinity zolpidem binding (Proc Natl Acad Sci USA 94:8824-8829, 1997; Mol Pharmacol 52:874-881, 1997). In this study, we used radioligand binding techniques, gamma2/alpha1 chimeric subunits (chi), site-directed mutagenesis, and molecular modeling to identify additional gamma2 subunit residues important for high-affinity zolpidem binding. Whereas alpha1beta2chi receptors containing only the first 161 amino-terminal residues of the gamma2 subunit bind the classic BZD flunitrazepam with wild-type affinity, zolpidem affinity is decreased approximately 8-fold. By incrementally restoring gamma2 subunit sequence, we identified a seven-amino acid stretch in the gamma2 subunit loop F region (amino acids 186-192) that is required to confer high-affinity zolpidem binding to GABARs. When mapped to a homology model, these seven amino acids make up part of loop F located at the alpha/gamma interface. Based on in silico zolpidem docking, three residues within loop F, gamma2Glu189, gamma2Thr193, and gamma2Arg194, emerge as being important for stabilizing zolpidem in the BZD binding pocket and probably interact with other loop F residues to maintain the structural integrity of the BZD binding site.


Assuntos
Piridinas/farmacocinética , Receptores de GABA-A/fisiologia , Sítios de Ligação , Clonagem Molecular , Flunitrazepam/farmacocinética , Hipnóticos e Sedativos/farmacocinética , Modelos Moleculares , Proteínas Mutantes Quiméricas/metabolismo , Conformação Proteica , Ensaio Radioligante , Receptores de GABA-A/química , Receptores de GABA-A/genética , Zolpidem
5.
Mol Pharmacol ; 63(2): 289-96, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12527800

RESUMO

Several structural subclasses of ligands bind to the benzodiazepine (BZD) binding site of the GABA(A) receptor. Previous studies from this laboratory have suggested that imidazobenzodiazepines (i-BZDs, e.g., Ro 15-1788) require domains in the BZD binding site for high-affinity binding that are distinct from the requirements of classic BZDs (e.g., flunitrazepam). Here, we used systematic mutagenesis and the substituted cysteine accessibility method to map the recognition domain of i-BZDs near two residues implicated in BZD binding, gamma(2)A79 and gamma(2)T81. Both classic BZDs and i-BZDs protect cysteines substituted at gamma(2)A79 and gamma(2)T81 from covalent modification, suggesting that these ligands may occupy common volumetric spaces during binding. However, the binding of i-BZDs is more sensitive to mutations at gamma(2)A79 than classic BZDs or BZDs that lack a 3'-imidazo substituent (e.g., midazolam). The effect that gamma(2)A79 mutagenesis has on the binding affinities of a series of structurally rigid i-BZDs is related to the volume of the 3'-imidazo substituents. Furthermore, larger amino acid side chains introduced at gamma(2)A79 cause correspondingly larger decreases in the binding affinities of i-BZDs with bulky 3' substituents. These data are consistent with a model in which gamma(2)A79 lines a subsite within the BZD binding pocket that accommodates the 3' substituent of i-BZDs. In agreement with our experimental data, computer-assisted docking of Ro 15-4513 into a molecular model of the BZD binding site positions the 3'-imidazo substituent of Ro 15-4513 near gamma(2)A79.


Assuntos
Benzodiazepinas/farmacologia , Flumazenil/farmacologia , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinas/química , Sítios de Ligação , Células Cultivadas , Flumazenil/química , Moduladores GABAérgicos/química , Moduladores GABAérgicos/farmacologia , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Ratos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA