Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 614(7947): 334-342, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697826

RESUMO

The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.


Assuntos
Linfócitos T CD8-Positivos , Tolerância Imunológica , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Fígado , Células Mieloides , Humanos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Quimiotaxia de Leucócito , Bactérias/imunologia , Intestinos/imunologia , Intestinos/microbiologia
2.
Nature ; 601(7891): 110-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758478

RESUMO

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Assuntos
Infecções Assintomáticas , COVID-19/imunologia , COVID-19/virologia , RNA Polimerases Dirigidas por DNA/imunologia , Células T de Memória/imunologia , SARS-CoV-2/imunologia , Soroconversão , Proliferação de Células , Estudos de Coortes , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Feminino , Pessoal de Saúde , Humanos , Masculino , Proteínas de Membrana/imunologia , Células T de Memória/citologia , Complexos Multienzimáticos/imunologia , SARS-CoV-2/enzimologia , SARS-CoV-2/crescimento & desenvolvimento , Transcrição Gênica/imunologia
3.
Hepatology ; 80(3): 649-663, 2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687604

RESUMO

BACKGROUND AND AIMS: HBV and HIV coinfection is a common occurrence globally, with significant morbidity and mortality. Both viruses lead to immune dysregulation including changes in natural killer (NK) cells, a key component of antiviral defense and a promising target for HBV cure strategies. Here we used high-throughput single-cell analysis to explore the immune cell landscape in people with HBV mono-infection and HIV/HBV coinfection, on antiviral therapy, with emphasis on identifying the distinctive characteristics of NK cell subsets that can be therapeutically harnessed. APPROACH AND RESULTS: Our data show striking differences in the transcriptional programs of NK cells. HIV/HBV coinfection was characterized by an over-representation of adaptive, KLRC2 -expressing NK cells, including a higher abundance of a chemokine-enriched ( CCL3/CCL4 ) adaptive cluster. The NK cell remodeling in HIV/HBV coinfection was reflected in enriched activation pathways, including CD3ζ phosphorylation and ZAP-70 translocation that can mediate stronger antibody-dependent cellular cytotoxicity responses and a bias toward chemokine/cytokine signaling. By contrast, HBV mono-infection imposed a stronger cytotoxic profile on NK cells and a more prominent signature of "exhaustion" with higher circulating levels of HBsAg. Phenotypic alterations in the NK cell pool in coinfection were consistent with increased "adaptiveness" and better capacity for antibody-dependent cellular cytotoxicity compared to HBV mono-infection. Overall, an adaptive NK cell signature correlated inversely with circulating levels of HBsAg and HBV-RNA in our cohort. CONCLUSIONS: This study provides new insights into the differential signature and functional profile of NK cells in HBV and HIV/HBV coinfection, highlighting pathways that can be manipulated to tailor NK cell-focused approaches to advance HBV cure strategies in different patient groups.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Coinfecção , Infecções por HIV , Células Matadoras Naturais , Humanos , Infecções por HIV/imunologia , Infecções por HIV/complicações , Células Matadoras Naturais/imunologia , Coinfecção/imunologia , Masculino , Feminino , Adulto , Hepatite B/imunologia , Hepatite B/complicações , Pessoa de Meia-Idade , Hepatite B Crônica/imunologia , Hepatite B Crônica/complicações , Hepatite B Crônica/virologia
4.
Gut ; 71(7): 1399-1411, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34548339

RESUMO

OBJECTIVE: Tissue-resident memory T cells (TRM) are vital immune sentinels that provide protective immunity. While hepatic CD8+ TRM have been well described, little is known about the location, phenotype and function of CD4+ TRM. DESIGN: We used multiparametric flow cytometry, histological assessment and novel human tissue coculture systems to interrogate the ex vivo phenotype, function and generation of the intrahepatic CD4+ T-cell compartment. We also used leukocytes isolated from human leukocyte antigen (HLA)-disparate liver allografts to assess long-term retention. RESULTS: Hepatic CD4+ T cells were delineated into three distinct populations based on CD69 expression: CD69-, CD69INT and CD69HI. CD69HICD4+ cells were identified as tissue-resident CD4+ T cells on the basis of their exclusion from the circulation, phenotypical profile (CXCR6+CD49a+S1PR1-PD-1+) and long-term persistence within the pool of donor-derived leukcoocytes in HLA-disparate liver allografts. CD69HICD4+ T cells produced robust type 1 polyfunctional cytokine responses on stimulation. Conversely, CD69INTCD4+ T cells represented a more heterogenous population containing cells with a more activated phenotype, a distinct chemokine receptor profile (CX3CR1+CXCR3+CXCR1+) and a bias towards interleukin-4 production. While CD69INTCD4+ T cells could be found in the circulation and lymph nodes, these cells also formed part of the long-term resident pool, persisting in HLA-mismatched allografts. Notably, frequencies of CD69INTCD4+ T cells correlated with necroinflammatory scores in chronic hepatitis B infection. Finally, we demonstrated that interaction with hepatic epithelia was sufficient to generate CD69INTCD4+ T cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HICD4+ T cells. CONCLUSIONS: High and intermediate CD69 expressions mark human hepatic CD4+ TRM and a novel functionally distinct recirculating population, respectively, both shaped by the liver microenvironment to achieve diverse immunosurveillance.


Assuntos
Linfócitos T CD4-Positivos , Fígado , Linfócitos T CD8-Positivos , Citocinas/imunologia , Humanos , Memória Imunológica , Fígado/imunologia , Monitorização Imunológica
5.
Immunother Adv ; 3(1): ltad026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020310

RESUMO

Immunotherapy treatment strategies have proven effective in a limited portion of patients, where identifying responders from non-responders to treatment remains a challenge. While some indications can be drawn from invasive biopsies, we need more accessible methods for predicting response and better correlates of response prior to starting therapy. Recent work has identified differences in immune composition at baseline in peripheral blood from melanoma patients responding to PD-1 blockade treatment. Through flow cytometric analysis of T cell receptors, phenotypical features of CD8+ and CD4+ T cells and Tregs could allow for the stratification of treatment response. Analysing T cells within peripheral blood could potentially allow for the stratification of PD-1 treatment response prior to therapy in different cancer settings.

6.
STAR Protoc ; 3(2): 101356, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516846

RESUMO

With the growing appreciation of tissue-resident immunity, studying tissue-specific immune cells contributing to both homeostasis and disease is imperative. Here, we provide a protocol for the isolation of human intrahepatic leukocytes (IHL) maximizing viability, purity, and yield. Our protocol is scalable by tissue weight, allowing for reproducible and efficient IHL liberation suitable for functional characterization, cell isolation, and profiling by flow (or mass) cytometry. Furthermore, we provide a "guide" to determine an expected IHL yield per gram of tissue processed. For complete details on the use and execution of this protocol, please refer to Stegmann et al. (2016), Pallett et al. (2017), Easom et al. (2018), Swadling et al. (2020), Pallett et al. (2020), and Zakeri et al. (2022).


Assuntos
Leucócitos , Linfócitos , Separação Celular/métodos , Citometria de Fluxo/métodos , Humanos
7.
Sci Transl Med ; 14(640): eabi4670, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417187

RESUMO

A better understanding of mechanisms that regulate CD8+T cell responses to therapeutic vaccines is needed to develop approaches to enhance vaccine efficacy for chronic viral infections and cancers. We show here that NK cell depletion enhanced antigen-specific T cell responses to chimp adenoviral vector (ChAdOx) vaccination in a mouse model of chronic HBV infection (CHB). Probing the mechanism underlying this negative regulation, we observed that CHB drove parallel up-regulation of programmed cell death ligand 1 (PD-L1) on liver-resident NK cells and programmed cell death 1 (PD-1) on intrahepatic T cells. PD-L1-expressing liver-resident NK cells suppressed PD-1hiCD8+T cells enriched within the HBV-specific response to therapeutic vaccination. Cytokine activation of NK cells also induced PD-L1, and combining cytokine activation with PD-L1 blockade resulted in conversion of NK cells into efficient helpers that boosted HBV-specific CD8+T cell responses to therapeutic vaccination in mice and to chronic infection in humans. Our findings delineate an immunotherapeutic combination that can boost the response to therapeutic vaccination in CHB and highlight the broader importance of PD-L1-dependent regulation of T cells by cytokine-activated NK cells.


Assuntos
Antígeno B7-H1 , Vacinas , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Células Matadoras Naturais , Camundongos , Receptor de Morte Celular Programada 1/metabolismo
8.
Nat Commun ; 13(1): 1372, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296658

RESUMO

Immunotherapy is now the standard of care for advanced hepatocellular carcinoma (HCC), yet many patients fail to respond. A major unmet goal is the boosting of T-cells with both strong HCC reactivity and the protective advantages of tissue-resident memory T-cells (TRM). Here, we show that higher intratumoural frequencies of γδ T-cells, which have potential for HLA-unrestricted tumour reactivity, associate with enhanced HCC patient survival. We demonstrate that γδ T-cells exhibit bona fide tissue-residency in human liver and HCC, with γδTRM showing no egress from hepatic vasculature, persistence for >10 years and superior anti-tumour cytokine production. The Vγ9Vδ2 T-cell subset is selectively depleted in HCC but can efficiently target HCC cell lines sensitised to accumulate isopentenyl-pyrophosphate by the aminobisphosphonate Zoledronic acid. Aminobisphosphonate-based expansion of peripheral Vγ9Vδ2 T-cells recapitulates a TRM phenotype and boosts cytotoxic potential. Thus, our data suggest more universally effective HCC immunotherapy may be achieved by combining aminobisphosphonates to induce Vγ9Vδ2TRM capable of replenishing the depleted pool, with additional intratumoural delivery to sensitise HCC to Vγ9Vδ2TRM-based targeting.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T
9.
Nat Commun ; 12(1): 2814, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990561

RESUMO

Determining divergent metabolic requirements of T cells, and the viruses and tumours they fail to combat, could provide new therapeutic checkpoints. Inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) has direct anti-carcinogenic activity. Here, we show that ACAT inhibition has antiviral activity against hepatitis B (HBV), as well as boosting protective anti-HBV and anti-hepatocellular carcinoma (HCC) T cells. ACAT inhibition reduces CD8+ T cell neutral lipid droplets and promotes lipid microdomains, enhancing TCR signalling and TCR-independent bioenergetics. Dysfunctional HBV- and HCC-specific T cells are rescued by ACAT inhibitors directly ex vivo from human liver and tumour tissue respectively, including tissue-resident responses. ACAT inhibition enhances in vitro responsiveness of HBV-specific CD8+ T cells to PD-1 blockade and increases the functional avidity of TCR-gene-modified T cells. Finally, ACAT regulates HBV particle genesis in vitro, with inhibitors reducing both virions and subviral particles. Thus, ACAT inhibition provides a paradigm of a metabolic checkpoint able to constrain tumours and viruses but rescue exhausted T cells, rendering it an attractive therapeutic target for the functional cure of HBV and HBV-related HCC.


Assuntos
Inibidores Enzimáticos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Esterol O-Aciltransferase/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/virologia , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacologia , Técnicas In Vitro , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/virologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/virologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA