Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 33(7): 2273-2295, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33871652

RESUMO

Red flower color has arisen multiple times and is generally associated with hummingbird pollination. The majority of evolutionary transitions to red color proceeded from purple lineages and tend to be genetically simple, almost always involving a few loss-of-function mutations of major phenotypic effect. Here we report on the complex evolution of a novel red floral color in the hummingbird-pollinated Petunia exserta (Solanaceae) from a colorless ancestor. The presence of a red color is remarkable because the genus cannot synthesize red anthocyanins and P. exserta retains a nonfunctional copy of the key MYB transcription factor AN2. We show that moderate upregulation and a shift in tissue specificity of an AN2 paralog, DEEP PURPLE, restores anthocyanin biosynthesis in P. exserta. An essential shift in anthocyanin hydroxylation occurred through rebalancing the expression of three hydroxylating genes. Furthermore, the downregulation of an acyltransferase promotes reddish hues in typically purple pigments by preventing acyl group decoration of anthocyanins. This study presents a rare case of a genetically complex evolutionary transition toward the gain of a novel red color.


Assuntos
Flores/metabolismo , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Solanaceae/metabolismo , Fatores de Transcrição/metabolismo , Flores/genética , Petunia/genética , Proteínas de Plantas/genética , Solanaceae/genética , Fatores de Transcrição/genética
2.
BMC Biol ; 21(1): 58, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941631

RESUMO

BACKGROUND: Theory suggests that the genetic architecture of traits under divergent natural selection influences how easily reproductive barriers evolve and are maintained between species. Divergently selected traits with a simple genetic architecture (few loci with major phenotypic effects) should facilitate the establishment and maintenance of reproductive isolation between species that are still connected by some gene flow. While empirical support for this idea appears to be mixed, most studies test the influence of trait architectures on reproductive isolation only indirectly. Petunia plant species are, in part, reproductively isolated by their different pollinators. To investigate the genetic causes and consequences of this ecological isolation, we deciphered the genetic architecture of three floral pollination syndrome traits in naturally occurring hybrids between the widespread Petunia axillaris and the highly endemic and endangered P. exserta. RESULTS: Using population genetics, Bayesian linear mixed modelling and genome-wide association studies, we found that the three pollination syndrome traits vary in genetic architecture. Few genome regions explain a majority of the variation in flavonol content (defining UV floral colour) and strongly predict the trait value in hybrids irrespective of interspecific admixture in the rest of their genomes. In contrast, variation in pistil exsertion and anthocyanin content (defining visible floral colour) is controlled by many genome-wide loci. Opposite to flavonol content, the genome-wide proportion of admixture between the two species predicts trait values in their hybrids. Finally, the genome regions strongly associated with the traits do not show extreme divergence between individuals representing the two species, suggesting that divergent selection on these genome regions is relatively weak within their contact zones. CONCLUSIONS: Among the traits analysed, those with a more complex genetic architecture are best maintained in association with the species upon their secondary contact. We propose that this maintained genotype-phenotype association is a coincidental consequence of the complex genetic architectures of these traits: some of their many underlying small-effect loci are likely to be coincidentally linked with the actual barrier loci keeping these species partially isolated upon secondary contact. Hence, the genetic architecture of a trait seems to matter for the outcome of hybridization not only then when the trait itself is under selection.


Assuntos
Petunia , Petunia/genética , Estudo de Associação Genômica Ampla , Teorema de Bayes , Hibridização Genética , Reprodução , Polinização/genética , Flores/genética
3.
New Phytol ; 239(5): 2007-2025, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394728

RESUMO

Members of the R2R3-MYB transcription factor subgroup 19 (SG19) have been extensively studied in multiple plant species using different silenced or mutated lines. Some studies have proposed a function in flower opening, others in floral organ development/maturation, or specialized metabolism production. While SG19 members are clearly key players during flower development and maturation, the resulting picture is complex, confusing our understanding in how SG19 genes function. To clarify the function of the SG19 transcription factors, we used a single system, Petunia axillaris, and targeted its two SG19 members (EOB1 and EOB2) by CRISPR-Cas9. Although EOB1 and EOB2 are highly similar, they display radically different mutant phenotypes. EOB1 has a specific role in scent emission while EOB2 has pleiotropic functions during flower development. The eob2 knockout mutants reveal that EOB2 is a repressor of flower bud senescence by inhibiting ethylene production. Moreover, partial loss-of-function mutants (transcriptional activation domain missing) show that EOB2 is also involved in both petal and pistil maturation through regulation of primary and secondary metabolism. Here, we provide new insights into the genetic regulation of flower maturation and senescence. It also emphasizes the function of EOB2 in the adaptation of plants to specific guilds of pollinators.


Assuntos
Petunia , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/fisiologia , Reprodução , Petunia/metabolismo
4.
Plant J ; 104(2): 289-301, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32780443

RESUMO

Adaptation to different pollinators is an important driver of speciation in the angiosperms. Genetic approaches such as QTL mapping have been successfully used to identify the underlying speciation genes. However, these methods are often limited by widespread suppression of recombination due to divergence between species. While the mutations that caused the interspecific differences in floral color and scent have been elucidated in a variety of plant genera, the genes that are responsible for morphological differences remain mostly unknown. Differences in floral organ length determine the pollination efficiency of hawkmoths and hummingbirds, and therefore the genes that control these differences are potential speciation genes. Identifying such genes is challenging, especially in non-model species and when studying complex traits for which little prior genetic and biochemical knowledge is available. Here we combine transcriptomics with detailed growth analysis to identify candidate transcription factors underlying interspecific variation in the styles of Petunia flowers. Starting from a set of 2284 genes, stepwise filtering for expression in styles, differential expression between species, correlation with growth-related traits, allele-specific expression in interspecific hybrids, and/or high-impact polymorphisms resulted in a set of 43 candidate speciation genes. Validation by virus-induced gene silencing identified two MYB transcription factors, EOBI and EOBII, that were previously shown to regulate floral scent emission, a trait associated with pollination by hawkmoths.


Assuntos
Petunia/fisiologia , Proteínas de Plantas/genética , Polinização/fisiologia , Fatores de Transcrição/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Petunia/genética , Petunia/crescimento & desenvolvimento , Polinização/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
5.
Plant Cell ; 29(12): 2959-2973, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29167321

RESUMO

How complex developmental-genetic networks are translated into organs with specific 3D shapes remains an open question. This question is particularly challenging because the elaboration of specific shapes is in essence a question of mechanics. In plants, this means how the genetic circuitry affects the cell wall. The mechanical properties of the wall and their spatial variation are the key factors controlling morphogenesis in plants. However, these properties are difficult to measure and investigating their relation to genetic regulation is particularly challenging. To measure spatial variation of mechanical properties, one must determine the deformation of a tissue in response to a known force with cellular resolution. Here, we present an automated confocal micro-extensometer (ACME), which greatly expands the scope of existing methods for measuring mechanical properties. Unlike classical extensometers, ACME is mounted on a confocal microscope and uses confocal images to compute the deformation of the tissue directly from biological markers, thus providing 3D cellular scale information and improved accuracy. Additionally, ACME is suitable for measuring the mechanical responses in live tissue. As a proof of concept, we demonstrate that the plant hormone gibberellic acid induces a spatial gradient in mechanical properties along the length of the Arabidopsis thaliana hypocotyl.


Assuntos
Arabidopsis/citologia , Microscopia Confocal/instrumentação , Células Vegetais/química , Automação , Fenômenos Biomecânicos , Parede Celular/efeitos dos fármacos , Parede Celular/fisiologia , Elasticidade , Giberelinas/farmacologia , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Luz , Modelos Biológicos , Células Vegetais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
6.
PLoS Comput Biol ; 15(4): e1006896, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998674

RESUMO

Polar auxin transport lies at the core of many self-organizing phenomena sustaining continuous plant organogenesis. In angiosperms, the shoot apical meristem is a potentially unique system in which the two main modes of auxin-driven patterning-convergence and canalization-co-occur in a coordinated manner and in a fully three-dimensional geometry. In the epidermal layer, convergence points form, from which auxin is canalized towards inner tissue. Each of these two patterning processes has been extensively investigated separately, but the integration of both in the shoot apical meristem remains poorly understood. We present here a first attempt of a three-dimensional model of auxin-driven patterning during phyllotaxis. We base our simulations on a biochemically plausible mechanism of auxin transport proposed by Cieslak et al. (2015) which generates both convergence and canalization patterns. We are able to reproduce most of the dynamics of PIN1 polarization in the meristem, and we explore how the epidermal and inner cell layers act in concert during phyllotaxis. In addition, we discuss the mechanism by which initiating veins connect to the already existing vascular system.


Assuntos
Transporte Biológico/fisiologia , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Modelos Biológicos , Células Vegetais , Arabidopsis/citologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Biologia Computacional , Simulação por Computador , Células Vegetais/metabolismo , Células Vegetais/fisiologia , Folhas de Planta/citologia , Caules de Planta/citologia
7.
Development ; 143(18): 3230-7, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624828

RESUMO

The differentiation of a leaf - from its inception as a semicircular bulge on the surface of the shoot apical meristem into a flattened structure with specialized upper and lower surfaces - is one of the most intensely studied processes in plant developmental biology. The large body of contemporary data on leaf dorsiventrality has its origin in the pioneering experiments of Ian Sussex, who carried out these studies as a PhD student in the early 1950s. Here, we review his original experiments in their historical context and describe our current understanding of this surprisingly complex process. Finally, we postulate possible candidates for the 'Sussex signal' - the elusive meristem-derived factor that first ignited interest in this important developmental problem.


Assuntos
Ácidos Indolacéticos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Genes Dev ; 25(13): 1439-50, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21724835

RESUMO

Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin.


Assuntos
Luz , Organogênese/efeitos da radiação , Caules de Planta/citologia , Caules de Planta/efeitos da radiação , Solanum lycopersicum/citologia , Solanum lycopersicum/efeitos da radiação , Citocininas/metabolismo , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/metabolismo , Organogênese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Brotos de Planta/citologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Transdução de Sinais/efeitos da radiação
9.
Development ; 142(11): 1992-2001, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25953346

RESUMO

The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport of the phytohormone auxin by cellular influx and efflux carriers, such as AUX1 and PIN1. Their important role in phyllotaxis is evident from mutant phenotypes, but their exact roles in space and time are difficult to address due to the strong pleiotropic phenotypes of most mutants in phyllotaxis. Models of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis. Using amplified femtosecond laser pulses, we ablated the internal tissues in young leaf primordia of tomato (Solanum lycopersicum) without damaging the overlying L1 and L2 layers. Our results show that ablation of the future midvein leads to a transient accumulation of auxin in the primordia and to an increase in their width. Phyllotaxis was transiently affected after midvein ablations, but readjusted after two plastochrons. These results indicate that the developing midvein is involved in the basipetal transport of auxin through young primordia, which contributes to phyllotactic spacing and stability.


Assuntos
Ácidos Indolacéticos/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/embriologia , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/embriologia , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/genética , Tamanho do Órgão , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/metabolismo
10.
Genes Dev ; 23(3): 373-84, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19204121

RESUMO

The plant hormone auxin mediates developmental patterning by a mechanism that is based on active transport. In the shoot apical meristem, auxin gradients are thought to be set up through a feedback loop between auxin and the activity and polar localization of its transporter, the PIN1 protein. Two distinct molecular mechanisms for the subcellular polarization of PIN1 have been proposed. For leaf positioning (phyllotaxis), an "up-the-gradient" PIN1 polarization mechanism has been proposed, whereas the formation of vascular strands is thought to proceed by "with-the-flux" PIN1 polarization. These patterning mechanisms intersect during the initiation of the midvein, which raises the question of how two different PIN1 polarization mechanisms may work together. Our detailed analysis of PIN1 polarization during midvein initiation suggests that both mechanisms for PIN1 polarization operate simultaneously. Computer simulations of the resulting dual polarization model are able to reproduce the dynamics of observed PIN1 localization. In addition, the appearance of high auxin concentration in our simulations throughout the initiation of the midvein is consistent with experimental observation and offers an explanation for a long-standing criticism of the canalization hypothesis; namely, how both high flux and high concentration can occur simultaneously in emerging veins.


Assuntos
Modelos Biológicos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Sequência de Bases , Transporte Biológico Ativo , Padronização Corporal/efeitos dos fármacos , Simulação por Computador , Primers do DNA/genética , DNA de Plantas/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas
11.
Planta ; 241(5): 1241-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25656052

RESUMO

MAIN CONCLUSION: Switches between pollination syndromes have happened frequently during angiosperm evolution. Using QTL mapping and reciprocal introgressions, we show that changes in reproductive organ morphology have a simple genetic basis. In animal-pollinated plants, flowers have evolved to optimize pollination efficiency by different pollinator guilds and hence reproductive success. The two Petunia species, P. axillaris and P. exserta, display pollination syndromes adapted to moth or hummingbird pollination. For the floral traits color and scent, genetic loci of large phenotypic effect have been well documented. However, such large-effect loci may be typical for shifts in simple biochemical traits, whereas the evolution of morphological traits may involve multiple mutations of small phenotypic effect. Here, we performed a quantitative trait locus (QTL) analysis of floral morphology, followed by an in-depth study of pistil and stamen morphology and the introgression of individual QTL into reciprocal parental backgrounds. Two QTLs, on chromosomes II and V, are sufficient to explain the interspecific difference in pistil and stamen length. Since most of the difference in organ length is caused by differences in cell number, genes underlying these QTLs are likely to be involved in cell cycle regulation. Interestingly, conservation of the locus on chromosome II in a different P. axillaris subspecies suggests that the evolution of organ elongation was initiated on chromosome II in adaptation to different pollinators. We recently showed that QTLs for pistil and stamen length on chromosome II are tightly linked to QTLs for petal color and volatile emission. Linkage of multiple traits will enable major phenotypic change within a few generations in hybridizing populations. Thus, the genomic architecture of pollination syndromes in Petunia allows for rapid responses to changing pollinator availability.


Assuntos
Flores , Petunia/genética , Polinização , Divisão Celular , Cromossomos de Plantas , Locos de Características Quantitativas , Reprodução , Especificidade da Espécie
12.
J Exp Bot ; 66(3): 933-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25399019

RESUMO

Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.


Assuntos
Eragrostis/crescimento & desenvolvimento , Eragrostis/genética , Proteínas de Plantas/genética , Tubulina (Proteína)/genética , Sequência de Aminoácidos , Eragrostis/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
13.
Plant Cell ; 24(6): 2318-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22722959

RESUMO

In a majority of species, leaf development is thought to proceed in a bilaterally symmetric fashion without systematic asymmetries. This is despite the left and right sides of an initiating primordium occupying niches that differ in their distance from sinks and sources of auxin. Here, we revisit an existing model of auxin transport sufficient to recreate spiral phyllotactic patterns and find previously overlooked asymmetries between auxin distribution and the centers of leaf primordia. We show that it is the direction of the phyllotactic spiral that determines the side of the leaf these asymmetries fall on. We empirically confirm the presence of an asymmetric auxin response using a DR5 reporter and observe morphological asymmetries in young leaf primordia. Notably, these morphological asymmetries persist in mature leaves, and we observe left-right asymmetries in the superficially bilaterally symmetric leaves of tomato (Solanum lycopersicum) and Arabidopsis thaliana that are consistent with modeled predictions. We further demonstrate that auxin application to a single side of a leaf primordium is sufficient to recapitulate the asymmetries we observe. Our results provide a framework to study a previously overlooked developmental axis and provide insights into the developmental constraints imposed upon leaf morphology by auxin-dependent phyllotactic patterning.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Padronização Corporal , Ácidos Indolacéticos/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genes Reporter , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Folhas de Planta/efeitos dos fármacos
14.
BMC Genomics ; 15: 581, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25007843

RESUMO

BACKGROUND: Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. RESULTS: The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. CONCLUSIONS: It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.


Assuntos
Eragrostis/genética , Genoma de Planta , Transcriptoma , Mapeamento Cromossômico , Eragrostis/classificação , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Prolaminas/classificação , Prolaminas/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Análise de Sequência de RNA
15.
Plant Biotechnol J ; 12(5): 534-40, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24891040

RESUMO

Tef, Eragrostis tef (Zucc.) Trotter, is the most important cereal in Ethiopia. Tef is cultivated by more than five million small-scale farmers annually and constitutes the staple food for more than half of the population of 80 million. The crop is preferred by both farmers and consumers due to its beneficial traits associated with its agronomy and utilization. The genetic and phenotypic diversity of tef in Ethiopia is a national treasure of potentially global importance. In order for this diversity to be effectively conserved and utilized, a better understanding at the genomic level is necessary. In the recent years, tef has become the subject of genomic research in Ethiopia and abroad. Genomic-assisted tef improvement holds tremendous potential for improving productivity, thereby benefiting the smallholder farmers who have cultivated and relied on the crop for thousands of years. It is hoped that such research endeavours will provide solutions to some of the age-old problems of tef's husbandry. In this review, we provide a brief description of the genesis and progress of tef genomic research to date, suggest ways to utilize the genomic tools developed so far, discuss the potential of genomics to enable sustainable conservation and use of tef genetic diversity and suggest opportunities for the future research.


Assuntos
Eragrostis/genética , Genômica/tendências , Pesquisa/tendências
16.
Mol Ecol ; 23(2): 374-89, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24372681

RESUMO

Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately, interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P. a. axillaris, P. a. parodii and P. a. subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P. axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100 000 years, which is compatible with a divergence time between 35 000 and 107 000 years ago between P. a. axillaris and P. a. parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P. a. axillaris and P. a. parodii in their contact zone.


Assuntos
Evolução Biológica , Variação Genética , Petunia/classificação , Teorema de Bayes , Núcleo Celular/genética , Clima , DNA de Cloroplastos/genética , DNA de Plantas/genética , Flores/anatomia & histologia , Genética Populacional , Pradaria , Haplótipos , Hibridização Genética , Modelos Genéticos , Petunia/anatomia & histologia , Petunia/genética , Análise de Sequência de DNA , América do Sul
17.
Mol Phylogenet Evol ; 70: 504-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161675

RESUMO

Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize.


Assuntos
Núcleo Celular/genética , Petunia/genética , Filogenia , Plastídeos/genética , Teorema de Bayes , Marcadores Genéticos , Variação Genética , Haplótipos , Hibridização Genética , Análise de Sequência de DNA
19.
Plant Physiol ; 158(4): 1514-22, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22353572

RESUMO

Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM's large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM's ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis.


Assuntos
Microscopia de Força Atômica/métodos , Especificidade de Órgãos , Células Vegetais/fisiologia , Fenômenos Biomecânicos/fisiologia , Parede Celular/ultraestrutura , Cebolas/ultraestrutura , Epiderme Vegetal/ultraestrutura , Pressão
20.
Plant Physiol ; 159(4): 1501-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22723086

RESUMO

Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is a key feature of plant architecture. Current models propose that the spatiotemporal regulation of organ initiation is controlled by a positive feedback loop between the plant hormone auxin and its efflux carrier PIN-FORMED1 (PIN1). Consequently, pin1 mutants give rise to naked inflorescence stalks with few or no flowers, indicating that PIN1 plays a crucial role in organ initiation. However, pin1 mutants do produce leaves. In order to understand the regulatory mechanisms controlling leaf initiation in Arabidopsis (Arabidopsis thaliana) rosettes, we have characterized the vegetative pin1 phenotype in detail. We show that although the timing of leaf initiation in vegetative pin1 mutants is variable and divergence angles clearly deviate from the canonical 137° value, leaves are not positioned at random during early developmental stages. Our data further indicate that other PIN proteins are unlikely to explain the persistence of leaf initiation and positioning during pin1 vegetative development. Thus, phyllotaxis appears to be more complex than suggested by current mechanistic models.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Meristema/metabolismo , Meristema/ultraestrutura , Mutação/genética , Folhas de Planta/anatomia & histologia , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA