Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875581

RESUMO

Bacterial protein degradation is a regulated process aided by protease adaptors that alter specificity of energy-dependent proteases. In Caulobacter crescentus, cell cycle-dependent protein degradation depends on a hierarchy of adaptors, such as the dimeric RcdA adaptor, which binds multiple cargo and delivers substrates to the ClpXP protease. RcdA itself is degraded in the absence of cargo, and how RcdA recognizes its targets is unknown. Here, we show that RcdA dimerization and cargo binding compete for a common interface. Cargo binding separates RcdA dimers, and a monomeric variant of RcdA fails to be degraded, suggesting that RcdA degradation is a result of self-delivery. Based on HDX-MS studies showing that different cargo rely on different regions of the dimerization interface, we generate RcdA variants that are selective for specific cargo and show cellular defects consistent with changes in selectivity. Finally, we show that masking of cargo binding by dimerization also limits substrate delivery to restrain overly prolific degradation. Using the same interface for dimerization and cargo binding offers an ability to limit excess protease adaptors by self-degradation while providing a capacity for binding a range of substrates.


Assuntos
Endopeptidase Clp/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Proteínas de Escherichia coli/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Fatores de Transcrição/metabolismo
2.
NPJ Vaccines ; 9(1): 72, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575581

RESUMO

Varicella zoster virus (VZV) is a highly contagious human herpes virus responsible for causing chickenpox (varicella) and shingles (herpes zoster). Despite the approval of a highly effective vaccine, Shingrix®, the global incidence of herpes zoster is increasing and the economic burden to the health care system and society are substantial due to significant loss of productivity and health complications, particularly among elderly and immunocompromised individuals. This is primarily because access to the vaccines remains mostly limited to countries within developed economies, such as USA and Canada. Therefore, similarly effective vaccines against VZV that are more accessible to the rest-of-the-world are necessary. In this study, we aimed to evaluate immunogenicity and memory response induced by three mRNA-LNP-based vaccine candidates targeting VZV's surface glycoprotein E (gE). C57BL/6 mice were immunized with each candidate vaccine, and humoral and cellular immune responses were assessed. Our results demonstrate that the mRNA-LNP-based vaccine candidates elicited robust and durable humoral responses specific to the gE antigen. Notably, mice vaccinated with the mRNA-LNP vaccines exhibited significantly higher antigen-specific T-cell cytokine production compared to the group receiving Shingrix®, the current standard of care vaccine. Additionally, mRNA-LNP vaccines induced long-lasting memory response, as evidenced by detection of persistent gE-specific Long-Lived Plasma Cells (LLPCs) and memory T cells four months after final immunization. These findings underscore the potential of our mRNA-LNP-based vaccine candidates in generating potent immune responses against VZV, offering promising prospects for their clinical development as an effective prophylactic vaccine against herpes zoster.

3.
Curr Opin Microbiol ; 36: 118-127, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28458096

RESUMO

Energy dependent proteolysis is essential for all life, but uncontrolled degradation leads to devastating consequences. In bacteria, oligomeric AAA+ proteases are responsible for controlling protein destruction and are regulated in part by adaptor proteins. Adaptors are regulatory factors that shape protease substrate choice by either restricting or enhancing substrate recognition in several ways. In some cases, protease activity or assembly itself requires adaptor binding. Adaptors can also alter specificity by acting as scaffolds to tether particular substrates to already active proteases. Finally, hierarchical assembly of adaptors can use combinations of several activities to enhance the protease's selectivity. Because the lifetime of the constituent proteins directly affects the duration of a particular signaling pathway, regulated proteolysis impacts almost all cellular responses. In this review, we describe recent progress in regulated protein degradation, focusing on fundamental principles of adaptors and how they perform critical biological functions, such as promoting cell cycle progression and quality control.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Caulobacter crescentus/metabolismo , Endopeptidase Clp/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA