Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(6): 694-704, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28369050

RESUMO

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos B , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Receptores de Células Precursoras de Linfócitos B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição STAT5/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Imunoprecipitação da Cromatina , Citometria de Fluxo , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Reação em Cadeia da Polimerase Multiplex , Subunidade p50 de NF-kappa B/genética , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Proteína Quinase C beta/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Taxa de Sobrevida , Transativadores/genética
2.
Blood ; 144(1): 74-83, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38588489

RESUMO

ABSTRACT: Pediatric B-cell precursor (BCP) lymphoblastic malignancies are neoplasms with manifestation either in the bone marrow or blood (BCP acute lymphoblastic leukemia [BCP-ALL]) or are less common in extramedullary tissue (BCP lymphoblastic lymphoma [BCP-LBL]). Although both presentations are similar in morphology and immunophenotype, molecular studies have been virtually restricted to BCP-ALL so far. The lack of molecular studies on BCP-LBL is due to its rarity and restriction on small, mostly formalin-fixed paraffin-embedded (FFPE) tissues. Here, to our knowledge, we present the first comprehensive mutational and transcriptional analysis of what we consider the largest BCP-LBL cohort described to date (n = 97). Whole-exome sequencing indicated a mutational spectrum of BCP-LBL, strikingly similar to that found in BCP-ALL. However, epigenetic modifiers were more frequently mutated in BCP-LBL, whereas BCP-ALL was more frequently affected by mutation in genes involved in B-cell development. Integrating copy number alterations, somatic mutations, and gene expression by RNA sequencing revealed that virtually all molecular subtypes originally defined in BCP-ALL are present in BCP-LBL, with only 7% of lymphomas that were not assigned to a subtype. Similar to BCP-ALL, the most frequent subtypes of BCP-LBL were high hyperdiploidy and ETV6::RUNX1. Tyrosine kinase/cytokine receptor rearrangements were detected in 7% of BCP-LBL. These results indicate that genetic subtypes can be identified in BCP-LBL using next-generation sequencing, even in FFPE tissue, and may be relevant to guide treatment.


Assuntos
Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Masculino , Pré-Escolar , Feminino , Adolescente , Lactente , Sequenciamento do Exoma , Transcrição Gênica
3.
Int J Cancer ; 154(8): 1455-1463, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38175816

RESUMO

Lynch syndrome (LS) predisposes to cancer in adulthood and is caused by heterozygous germline variants in a mismatch repair (MMR) gene. Recent studies show an increased prevalence of LS among children with cancer, suggesting a causal relationship. For LS-spectrum (LSS) cancers, including high-grade gliomas and colorectal cancer, causality has been supported by typical MMR-related tumor characteristics, but for non-LSS cancers, causality is unclear. We characterized 20 malignant tumors of 18 children with LS, including 16 non-LSS tumors. We investigated second hits, tumor mutational load, mutational signatures and MMR protein expression. In all LSS tumors and three non-LSS tumors, we detected MMR deficiency caused by second hit somatic alterations. Furthermore, these MMR-deficient tumors carried driver variants that likely originated as a consequence of MMR deficiency. However, in 13 non-LSS tumors (81%), a second hit and MMR deficiency were absent, thus a causal link between LS and cancer development in these children is lacking. These findings demonstrate that causality of LS in children with cancer, which can be determined by molecular tumor characterization, seems to be restricted to specific tumor types. Large molecular and epidemiological studies are needed to further refine the tumor spectrum in children with LS.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Criança , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Neoplasias Colorretais/patologia , Neoplasias Encefálicas/genética , Mutação em Linhagem Germinativa , Reparo de Erro de Pareamento de DNA/genética , Instabilidade de Microssatélites , Proteína 1 Homóloga a MutL/genética
4.
Haematologica ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841778

RESUMO

IKZF1-deletions occur in 10-15% of patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and predict a poor outcome. However, the impact of IKZF1-loss on sensitivity to drugs used in contemporary treatment protocols has remained underexplored. Here we show in experimental models and in patients that loss of IKZF1 promotes resistance to AraC, a key component of both upfront and relapsed treatment protocols. We attribute this resistance, in part, to diminished import and incorporation of cytarabine (AraC) due to reduced expression of the solute carrier hENT1. Moreover, we find elevated mRNA expression of Evi1, a known driver of therapy resistance in myeloid malignancies. Finally, a kinase directed CRISPR/Cas9-screen identified that inhibition of either mediator kinases CDK8/19 or casein kinase 2 can restore response to AraC. We conclude that this high-risk patient group could benefit from alternative antimetabolites, or targeted therapies that resensitize the cells to AraC.

5.
Haematologica ; 109(6): 1755-1765, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38124624

RESUMO

In pediatric acute lymphoblastic leukemia (ALL), mutations/deletions affecting the TP53 gene are rare at diagnosis. However, at relapse about 12% of patients show TP53 aberrations, which are predictive of a very poor outcome. Since p53-mediated apoptosis is an endpoint for many cytotoxic drugs, loss of p53 function frequently leads to therapy failure. In this study we show that CRISPR/Cas9-induced loss of TP53 drives resistance to a large majority of drugs used to treat relapsed ALL, including novel agents such as inotuzumab ozogamicin. Using a high-throughput drug screen, we identified the histone deacetylase inhibitor romidepsin as a potent sensitizer of drug responsiveness, improving sensitivity to all chemotherapies tested. In addition, romidepsin improved the response to cytarabine in TP53-deleted ALL cells in vivo. Together, these results indicate that the histone deacetylase inhibitor romidepsin can improve the efficacy of salvage therapies for relapsed TP53-mutated leukemia. Since romidepsin has been approved for clinical use in some adult malignancies, these findings may be rapidly translated to clinical practice.


Assuntos
Depsipeptídeos , Inibidores de Histona Desacetilases , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Proteína Supressora de Tumor p53 , Humanos , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Proteína Supressora de Tumor p53/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Camundongos , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas CRISPR-Cas , Ensaios Antitumorais Modelo de Xenoenxerto , Sinergismo Farmacológico
6.
Blood ; 138(23): 2383-2395, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280258

RESUMO

Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton's tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc-mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Aminoácidos/metabolismo , Antineoplásicos/uso terapêutico , Asparaginase/uso terapêutico , Piperidinas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adenina/farmacologia , Adenina/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Asparaginase/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Piperidinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Haematologica ; 108(4): 993-1005, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021603

RESUMO

Tyrosine kinase 2 (TYK2) is a member of the Janus kinase/signal transducer and activator of transcription pathway, which is central in cytokine signaling. Previously, germline TYK2 mutations have been described in two patients developing de novo T-cell acute lymphoblastic leukemias (T-ALL) or precursor B-ALL. The mutations (P760L and G761V) are located within the regulatory pseudokinase domain and lead to constitutive activation of TYK2. We demonstrate the transformation capacity of TYK2 P760L in hematopoietic cell systems including primary bone marrow cells. In vivo engraftment of TYK2 P760L-expressing cell lines led to development of leukemia. A kinase inhibitor screen uncovered that oncogenic TYK2 acts synergistically with the PI3K/AKT/mTOR and CDK4/6 pathways. Accordingly, the TYK2-specific inhibitor deucravacitinib (BMS986165) reduces cell viability of TYK2 P760L-transformed cell models and ex vivo cultured TYK2 P760L-mutated patient- derived xenograft cells most efficiently when combined with mTOR or CDK4/6 inhibitors. Our study thereby pioneers novel treatment options for patients suffering from TYK2-driven acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , TYK2 Quinase , Humanos , Linhagem Celular , Quinase 4 Dependente de Ciclina , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , TYK2 Quinase/genética , TYK2 Quinase/metabolismo
8.
Pediatr Blood Cancer ; 70(11): e30642, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37638834

RESUMO

18 F-fluorodeoxyglucose-positron emission tomography/computed tomography (PET/CT) imaging is currently not used in standard diagnostics for B-cell precursor lymphoblastic lymphoma (BCP-LBL), and it is unknown whether PET/CT imaging would lead to agreement between detection of lesions with the gold standard imaging methods. Therefore, we performed a retrospective cohort study in which we included 32 pediatric BCP-LBL patients and determined localizations by reviewing local imaging reports. There was a disagreement between protocol-based imaging and PET/CT in 59% of the patients, and the discrepancies mostly comprise of additional lesions detected with PET/CT, typically in lymph node and bone or the absence of bone marrow involvement with PET/CT. If PET/CT was leading in determining definite stage of disease, this would lead to a different stage and therapy branch in 31% and 28% of the patients, respectively.


Assuntos
Fluordesoxiglucose F18 , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico por imagem , Estudos Retrospectivos , Diagnóstico por Imagem
9.
Am J Hum Genet ; 104(4): 758-766, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929739

RESUMO

By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone demethylase and is involved in H3K9 demethylation, a crucial part of chromatin modification required for transcriptional regulation. We identified missense and truncating variants, suggesting that KDM3B haploinsufficiency is the underlying mechanism for this syndrome. By using a hybrid facial-recognition model, we show that individuals with a pathogenic variant in KDM3B have a facial gestalt, and that they show significant facial similarity compared to control individuals with ID. In conclusion, pathogenic variants in KDM3B cause a syndrome characterized by ID, short stature, and facial dysmorphism.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Nanismo/genética , Variação Genética , Deficiência Intelectual/genética , Histona Desmetilases com o Domínio Jumonji/genética , Anormalidades Musculoesqueléticas/genética , Estatura , Criança , Exoma , Face , Feminino , Estudos de Associação Genética , Mutação em Linhagem Germinativa , Haploinsuficiência , Histonas/química , Humanos , Masculino , Mutação de Sentido Incorreto , Fenótipo
10.
Pediatr Blood Cancer ; 69(1): e29361, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597466

RESUMO

INTRODUCTION: One-quarter of the relapses in children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occur very early (within 18 months, before completion of treatment), and prognosis in these patients is worse compared to cases that relapse after treatment has ended. METHODS: In this study, we performed a genomic analysis of diagnosis-relapse pairs of 12 children who relapsed very early, followed by a deep-sequencing validation of all identified mutations. In addition, we included one case with a good initial treatment response and on-treatment relapse at the end of upfront therapy. RESULTS: We observed a dynamic clonal evolution in all cases, with relapse almost exclusively originating from a subclone at diagnosis. We identified several driver mutations that may have influenced the outgrowth of a minor clone at diagnosis to become the major clone at relapse. For example, a minimal residual disease (MRD)-based standard-risk patient with ETV6-RUNX1-positive leukemia developed a relapse from a TP53-mutated subclone after loss of the wildtype allele. Furthermore, two patients with TCF3-PBX1-positive leukemia that developed a very early relapse carried E1099K WHSC1 mutations at diagnosis, a hotspot mutation that was recurrently encountered in other very early TCF3-PBX1-positive leukemia relapses as well. In addition to alterations in known relapse drivers, we found two cases with truncating mutations in the cohesin gene RAD21. CONCLUSION: Comprehensive genomic characterization of diagnosis-relapse pairs shows that very early relapses in BCP-ALL frequently arise from minor subclones at diagnosis. A detailed understanding of the therapeutic pressure driving these events may aid the development of improved therapies.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Evolução Clonal/genética , Genômica , Humanos , Prognóstico , Recidiva
11.
J Pathol ; 254(4): 494-504, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33565090

RESUMO

TRIM28 was recently identified as a Wilms' tumour (WT) predisposition gene, with germline pathogenic variants identified in around 1% of isolated and 8% of familial WT cases. TRIM28 variants are associated with epithelial WT, but the presence of other tumour components or anaplasia does not exclude the presence of a germline or somatic TRIM28 variant. In children with WT, TRIM28 acts as a classical tumour suppressor gene, with both alleles generally disrupted in the tumour. Therefore, loss of TRIM28 (KAP1/TIF1beta) protein expression in tumour tissue by immunohistochemistry is an effective strategy to identify patients carrying pathogenic TRIM28 variants. TRIM28 is a ubiquitously expressed corepressor that binds transcription factors in a context-, species-, and cell-type-specific manner to control the expression of genes and transposable elements during embryogenesis and cellular differentiation. In this review, we describe the inheritance patterns, histopathological and clinical features of TRIM28-associated WT, as well as potential underlying mechanisms of tumourigenesis during embryonic kidney development. Recognizing germline TRIM28 variants in patients with WT can enable counselling, genetic testing, and potential early detection of WT in other children in the family. A further exploration of TRIM28-associated WT will help to unravel the diverse and complex mechanisms underlying WT development. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Genes do Tumor de Wilms , Predisposição Genética para Doença/genética , Neoplasias Renais/genética , Proteína 28 com Motivo Tripartido/genética , Tumor de Wilms/genética , Humanos , Mutação
12.
J Pathol ; 255(2): 202-211, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231212

RESUMO

In a subset of pediatric cancers, a germline cancer predisposition is highly suspected based on clinical and pathological findings, but genetic evidence is lacking, which hampers genetic counseling and predictive testing in the families involved. We describe a family with two siblings born from healthy parents who were both neonatally diagnosed with atypical teratoid rhabdoid tumor (ATRT). This rare and aggressive pediatric tumor is associated with biallelic inactivation of SMARCB1, and in 30% of the cases, a predisposing germline mutation is involved. Whereas the tumors of both siblings showed loss of expression of SMARCB1 and acquired homozygosity of the locus, whole exome and whole genome sequencing failed to identify germline or somatic SMARCB1 pathogenic mutations. We therefore hypothesized that the insertion of a pathogenic repeat-rich structure might hamper its detection, and we performed optical genome mapping (OGM) as an alternative strategy to identify structural variation in this locus. Using this approach, an insertion of ~2.8 kb within intron 2 of SMARCB1 was detected. Long-range PCR covering this region remained unsuccessful, but PacBio HiFi genome sequencing identified this insertion to be a SINE-VNTR-Alu, subfamily E (SVA-E) retrotransposon element, which was present in a mosaic state in the mother. This SVA-E insertion disrupts correct splicing of the gene, resulting in loss of a functional allele. This case demonstrates the power of OGM and long-read sequencing to identify genomic variations in high-risk cancer-predisposing genes that are refractory to detection with standard techniques, thereby completing the clinical and molecular diagnosis of such complex cases and greatly improving counseling and surveillance of the families involved. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Mapeamento Cromossômico/métodos , Retroelementos/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Recém-Nascido , Tumor Rabdoide/congênito , Irmãos , Teratoma/congênito
13.
Nucleic Acids Res ; 48(2): 770-787, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799629

RESUMO

Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.


Assuntos
Anemia de Diamond-Blackfan/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Criança , Células Eritroides , Feminino , Humanos , Masculino , Mutação/genética , Precursores de RNA/genética , RNA Mensageiro/genética , Sequenciamento do Exoma
14.
Cancer ; 127(4): 628-638, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33146894

RESUMO

BACKGROUND: WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and range of developmental delays) is a rare contiguous gene deletion syndrome with a 45% to 60% risk of developing Wilms tumor (WT). Currently, surveillance and treatment recommendations are based on limited evidence. METHODS: Clinical characteristics, treatments, and outcomes were analyzed for patients with WAGR and WT/nephroblastomatosis who were identified through International Society of Pediatric Oncology Renal Tumor Study Group (SIOP-RTSG) registries and the SIOP-RTSG network (1989-2019). Events were defined as relapse, metachronous tumors, or death. RESULTS: Forty-three patients were identified. The median age at WT/nephroblastomatosis diagnosis was 22 months (range, 6-44 months). The overall stage was available for 40 patients, including 15 (37.5%) with bilateral disease and none with metastatic disease. Histology was available for 42 patients; 6 nephroblastomatosis without further WT and 36 WT, including 19 stromal WT (52.8%), 12 mixed WT (33.3%), 1 regressive WT (2.8%) and 2 other/indeterminable WT (5.6%). Blastemal type WT occurred in 2 patients (5.6%) after prolonged treatment for nephroblastomatosis; anaplasia was not reported. Nephrogenic rests were present in 78.9%. Among patients with WT, the 5-year event-free survival rate was 84.3% (95% confidence interval, 72.4%-98.1%), and the overall survival rate was 91.2% (95% confidence interval, 82.1%-100%). Events (n = 6) did not include relapse, but contralateral tumor development (n = 3) occurred up to 7 years after the initial diagnosis, and 3 deaths were related to hepatotoxicity (n = 2) and obstructive ileus (n = 1). CONCLUSIONS: Patients with WAGR have a high rate of bilateral disease and no metastatic or anaplastic tumors. Although they can be treated according to existing WT protocols, intensive monitoring of toxicity and surveillance of the remaining kidney(s) are advised. LAY SUMMARY: WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and range of developmental delays) is a rare genetic condition with an increased risk of developing Wilms tumor. In this study, 43 patients with WAGR and Wilms tumor (or Wilms tumor precursor lesions/nephroblastomatosis) were identified through the international registry of the International Society of Pediatric Oncology Renal Tumor Study Group (SIOP-RTSG) and the SIOP-RTSG network. In many patients (37.5%), both kidneys were affected. Disease spread to other organs (metastases) did not occur. Overall, this study demonstrates that patients with WAGR syndrome and Wilms tumor can be treated according to existing protocols. However, intensive monitoring of treatment complications and surveillance of the remaining kidney(s) are advised.


Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Síndrome WAGR/tratamento farmacológico , Tumor de Wilms/tratamento farmacológico , Anaplasia/induzido quimicamente , Anaplasia/patologia , Protocolos Antineoplásicos , Pré-Escolar , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Deleção de Genes , Humanos , Lactente , Rim/patologia , Fígado/patologia , Masculino , Intervalo Livre de Progressão , Fatores de Risco , Síndrome WAGR/complicações , Síndrome WAGR/genética , Síndrome WAGR/patologia , Tumor de Wilms/complicações , Tumor de Wilms/genética , Tumor de Wilms/patologia
15.
Br J Haematol ; 194(5): 888-892, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34337744

RESUMO

Minimal residual disease (MRD) diagnostics are implemented in most clinical protocols for patients with acute lymphoblastic leukaemia (ALL) and are mostly performed using rearranged immunoglobulin (IG) and/or T-cell receptor (TR) gene rearrangements as molecular polymerase chain reaction targets. Unfortunately, in 5-10% of patients no or no sensitive IG/TR targets are available, and patients therefore cannot be stratified appropriately. In the present study, we used fusion genes and genomic deletions as alternative MRD targets in these patients, which retrospectively revealed appropriate MDR stratification in 79% of patients with no (sensitive) IG/TR target, and a different risk group stratification in more than half of the cases.


Assuntos
Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Criança , Deleção de Genes , Humanos , Neoplasia Residual/genética , Fusão Oncogênica , Reação em Cadeia da Polimerase , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
16.
Haematologica ; 106(12): 3046-3055, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147938

RESUMO

Genomic studies of pediatric acute lymphoblastic leukemia (ALL) have shown remarkable heterogeneity in initial diagnosis, with multiple (sub)clones harboring lesions in relapse-associated genes. However, the clinical relevance of these subclonal alterations remains unclear. We assessed the clinical relevance and prognostic value of subclonal alterations in the relapse-associated genes IKZF1, CREBBP, KRAS, NRAS, PTPN11, TP53, NT5C2, and WHSC1 in 503 ALL cases. Using Molecular Inversion Probe sequencing and breakpoint-spanning PCR we reliably detected alterations below 1% allele frequency. We identified 660 genomic alterations in 285 diagnosis samples of which 495 (75%) were subclonal. RAS pathway mutations were common, particularly in minor subclones, and comparisons between RAS hotspot mutations revealed differences in their capacity to drive clonal expansion in ALL. We did not find an association of subclonal alterations with unfavorable outcome. Particularly for IKZF1, an established prognostic marker in ALL, all clonal but none of the subclonal alterations were preserved at relapse. We conclude that, for the genes tested, there is no basis to consider subclonal alterations detected at diagnosis for risk group stratification of ALL treatment.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Células Clonais , Genômica , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico
17.
Int J Cancer ; 145(4): 941-951, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30694527

RESUMO

Two percent of patients with Wilms tumors have a positive family history. In many of these cases the genetic cause remains unresolved. By applying germline exome sequencing in two families with two affected individuals with Wilms tumors, we identified truncating mutations in TRIM28. Subsequent mutational screening of germline and tumor DNA of 269 children affected by Wilms tumor was performed, and revealed seven additional individuals with germline truncating mutations, and one individual with a somatic truncating mutation in TRIM28. TRIM28 encodes a complex scaffold protein involved in many different processes, including gene silencing, DNA repair and maintenance of genomic integrity. Expression studies on mRNA and protein level showed reduction of TRIM28, confirming a loss-of-function effect of the mutations identified. The tumors showed an epithelial-type histology that stained negative for TRIM28 by immunohistochemistry. The tumors were bilateral in six patients, and 10/11 tumors are accompanied by perilobar nephrogenic rests. Exome sequencing on eight tumor DNA samples from six individuals showed loss-of-heterozygosity (LOH) of the TRIM28-locus by mitotic recombination in seven tumors, suggesting that TRIM28 functions as a tumor suppressor gene in Wilms tumor development. Additionally, the tumors showed very few mutations in known Wilms tumor driver genes, suggesting that loss of TRIM28 is the main driver of tumorigenesis. In conclusion, we identified heterozygous germline truncating mutations in TRIM28 in 11 children with mainly epithelial-type Wilms tumors, which become homozygous in tumor tissue. These data establish TRIM28 as a novel Wilms tumor predisposition gene, acting as a tumor suppressor gene by LOH.


Assuntos
Haploinsuficiência/genética , Proteína 28 com Motivo Tripartido/genética , Tumor de Wilms/genética , Carcinogênese/genética , Pré-Escolar , DNA de Neoplasias/genética , Feminino , Genes do Tumor de Wilms/fisiologia , Predisposição Genética para Doença/genética , Genótipo , Mutação em Linhagem Germinativa/genética , Heterozigoto , Humanos , Lactente , Neoplasias Renais/genética , Mutação com Perda de Função/genética , Perda de Heterozigosidade/genética , Masculino , Sequenciamento do Exoma/métodos
18.
Pediatr Blood Cancer ; 66(8): e27780, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034759

RESUMO

BACKGROUND: Assessment of minimal residual disease (MRD) is an integral component for response monitoring and treatment stratification in acute lymphoblastic leukemia (ALL). We aimed to evaluate the genomic ETV6-RUNX1 fusion sites as a single marker for MRD quantification. PROCEDURE: In a representative, uniformly treated cohort of pediatric relapsed ALL patients (n = 52), ETV6-RUNX1 fusion sites were compared to the current gold standard, immunoglobulin/T-cell receptor (Ig/TCR) gene rearrangements. RESULTS: Primer/probe sets designed to ETV6-RUNX1 fusions achieved significantly more frequent a sensitivity and a quantitative range of at least 10-4 compared to the gold standard with 100% and 73% versus 76% and 47%, respectively. The breakpoint sequence was identical at diagnosis and relapse in all tested cases. There was a high degree of concordance between quantitative MRD results assessed using ETV6-RUNX1 and the highest Ig/TCR marker (Spearman's 0.899, P < .01) with differences >½ log-step in only 6% of patients. A high proportion of ETV6-RUNX1-positive ALL relapses (40%) in our cohort showed a poor response to induction treatment at relapse, and therefore had an indication for hematopoietic stem cell transplantation, demonstrating the need of accurate identification of this subgroup. CONCLUSIONS: ETV6-RUNX1 fusion sites are highly sensitive and reliable MRD markers. Our data confirm that they are unaffected by clonal evolution and selection during front-line and second-line chemotherapy in contrast to Ig/TCR rearrangements, which require several markers per patient to compensate for the observed loss of target clones. In future studies, the genomic ETV6-RUNX1 fusion can be used as single MRD marker.


Assuntos
Biomarcadores Tumorais/genética , Evolução Clonal , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Genômica/métodos , Transplante de Células-Tronco Hematopoéticas , Neoplasia Residual/patologia , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Seguimentos , Humanos , Neoplasia Residual/genética , Neoplasia Residual/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico , Estudos Prospectivos , Curva ROC
19.
J Pathol ; 244(2): 135-142, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29105096

RESUMO

It is now well established that germline genomic aberrations can underlie high-penetrant familial polyposis and colorectal cancer syndromes, but a genetic cause has not yet been found for the major proportion of patients with polyposis. Since next-generation sequencing has become widely accessible, several novel, but rare, high-penetrant risk factors for adenomatous polyposis have been identified, all operating in pathways responsible for genomic maintenance and DNA repair. One of these is the base excision repair pathway. In addition to the well-established role of the DNA glycosylase gene MUTYH, biallelic mutations in which predispose to MUTYH-associated polyposis, a second DNA glycosylase gene, NTHL1, has recently been associated with adenomatous polyposis and a high colorectal cancer risk. Both recessive polyposis syndromes are associated with increased risks for several other cancer types as well, but the spectrum of benign and malignant tumours in individuals with biallelic NTHL1 mutations was shown to be broader; hence the name NTHL1-associated tumour syndrome. Colorectal tumours encountered in patients with these syndromes show unique, clearly distinct mutational signatures that may facilitate the identification of these syndromes. On the basis of the prevalence of pathogenic MUTYH and NTHL1 variants in the normal population, we estimate that the frequency of the novel NTHL1-associated tumour syndrome is five times lower than that of MUTYH-associated polyposis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Polipose Adenomatosa do Colo/genética , Biomarcadores Tumorais/genética , DNA Glicosilases/genética , Reparo do DNA/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Mutação , Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/patologia , Animais , Dano ao DNA , Predisposição Genética para Doença , Humanos , Taxa de Mutação , Penetrância , Fenótipo , Fatores de Risco
20.
PLoS Genet ; 12(2): e1005880, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26901136

RESUMO

Approximately 25-30% of colorectal cancer (CRC) cases are expected to result from a genetic predisposition, but in only 5-10% of these cases highly penetrant germline mutations are found. The remaining CRC heritability is still unexplained, and may be caused by a hitherto-undefined set of rare variants with a moderately penetrant risk. Here we aimed to identify novel risk factors for early-onset CRC using whole-exome sequencing, which was performed on a cohort of CRC individuals (n = 55) with a disease onset before 45 years of age. We searched for genes that were recurrently affected by rare variants (minor allele frequency ≤ 0.001) with potentially damaging effects and, subsequently, re-sequenced the candidate genes in a replication cohort of 174 early-onset or familial CRC individuals. Two functionally relevant genes with low frequency variants with potentially damaging effects, PTPN12 and LRP6, were found in at least three individuals. The protein tyrosine phosphatase PTP-PEST, encoded by PTPN12, is a regulator of cell motility and LRP6 is a component of the WNT-FZD-LRP5-LRP6 complex that triggers WNT signaling. All variants in LRP6 were identified in individuals with an extremely early-onset of the disease (≤30 years of age), and two of the three variants showed increased WNT signaling activity in vitro. In conclusion, we present PTPN12 and LRP6 as novel candidates contributing to the heterogeneous susceptibility to CRC.


Assuntos
Neoplasias Colorretais/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Idade de Início , Sequência de Aminoácidos , Segregação de Cromossomos/genética , Estudos de Coortes , Neoplasias Colorretais/enzimologia , Reparo de Erro de Pareamento de DNA/genética , Exoma/genética , Genes Neoplásicos , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Proteína Tirosina Fosfatase não Receptora Tipo 12/química , Proteína Tirosina Fosfatase não Receptora Tipo 12/genética , Análise de Sequência de DNA , Transdução de Sinais/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA