Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(9): 1054-1062, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169961

RESUMO

Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis. A cryogenic electron microscopy structure reveals that KZR-8445 occupies the fully opened Se61 lateral gate and blocks access to the lumenal plug domain. KZR-8445 binding stabilizes the lateral gate helices in a manner that traps select signal peptides in the Sec61 channel and prevents their movement into the lipid bilayer. Our results establish a framework for the structure-guided discovery of novel therapeutics that selectively modulate Sec61-mediated protein biogenesis.


Assuntos
Proteínas de Membrana , Sinais Direcionadores de Proteínas , Animais , Camundongos , Transporte Proteico , Proteínas de Membrana/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Biossíntese de Proteínas
2.
Proc Natl Acad Sci U S A ; 119(40): e2210990119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36122200

RESUMO

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Antivirais/química , Antivirais/farmacologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos
3.
Emerg Infect Dis ; 30(8): 1735-1737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043418

RESUMO

We assessed the distribution of SARS-CoV-2 at autopsy in 22 deceased persons with confirmed COVID-19. SARS-CoV-2 was found by PCR (2/22, 9.1%) and by culture (1/22, 4.5%) in skull sawdust, suggesting that live virus is present in tissues postmortem, including bone. Occupational exposure risk is low with appropriate personal protective equipment.


Assuntos
Autopsia , COVID-19 , SARS-CoV-2 , Crânio , Humanos , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/patologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Finlândia/epidemiologia , Crânio/patologia , Crânio/virologia , Masculino , Feminino , Exposição Ocupacional , Pessoa de Meia-Idade , Idoso , Adulto , Equipamento de Proteção Individual , Idoso de 80 Anos ou mais
4.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962256

RESUMO

The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Células Gigantes , Pirimidinas/farmacologia , SARS-CoV-2/metabolismo , Estaurosporina/análogos & derivados , Células A549 , COVID-19/metabolismo , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células Gigantes/metabolismo , Células Gigantes/virologia , Humanos , Estaurosporina/farmacologia
5.
Environ Res ; 249: 118451, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341073

RESUMO

Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.


Assuntos
COVID-19 , Mucosa Olfatória , Material Particulado , SARS-CoV-2 , Material Particulado/toxicidade , Humanos , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/virologia , COVID-19/imunologia , Poluentes Atmosféricos/toxicidade , Idoso , Masculino , Feminino , Doença de Alzheimer/imunologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/virologia , Pessoa de Meia-Idade , Citocinas/metabolismo , Idoso de 80 Anos ou mais , Estresse Oxidativo/efeitos dos fármacos
6.
J Neuroinflammation ; 20(1): 299, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098019

RESUMO

BACKGROUND: The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS: To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS: Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS: The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Anosmia/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Mucosa Olfatória/metabolismo
7.
PLoS Pathog ; 17(7): e1009721, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228753

RESUMO

Severe COVID-19 is characterized by extensive pulmonary complications, to which host immune responses are believed to play a role. As the major arm of innate immunity, neutrophils are one of the first cells recruited to the site of infection where their excessive activation can contribute to lung pathology. Low-density granulocytes (LDGs) are circulating neutrophils, whose numbers increase in some autoimmune diseases and cancer, but are poorly characterized in acute viral infections. Using flow cytometry, we detected a significant increase of LDGs in the blood of acute COVID-19 patients, compared to healthy controls. Based on their surface marker expression, COVID-19-related LDGs exhibit four different populations, which display distinctive stages of granulocytic development and most likely reflect emergency myelopoiesis. Moreover, COVID-19 LDGs show a link with an elevated recruitment and activation of neutrophils. Functional assays demonstrated the immunosuppressive capacities of these cells, which might contribute to impaired lymphocyte responses during acute disease. Taken together, our data confirms a significant granulocyte activation during COVID-19 and suggests that granulocytes of lower density play a role in disease progression.


Assuntos
COVID-19/imunologia , Granulócitos/classificação , Doença Aguda , Adulto , Idoso , COVID-19/sangue , Estudos de Casos e Controles , Estudos de Coortes , Convalescença , Progressão da Doença , Feminino , Seguimentos , Granulócitos/citologia , Humanos , Tolerância Imunológica/imunologia , Masculino , Pessoa de Meia-Idade , Receptores Depuradores Classe E/análise , Índice de Gravidade de Doença
8.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33905505

RESUMO

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Testes de Neutralização , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
9.
Euro Surveill ; 25(11)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32209163

RESUMO

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Assuntos
Busca de Comunicante , Infecções por Coronavirus , Coronavirus/genética , Coronavirus/isolamento & purificação , Pandemias , Pneumonia Viral , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Viagem , Adulto , Anticorpos Antivirais/sangue , Infecções Assintomáticas , Betacoronavirus , COVID-19 , Teste para COVID-19 , China , Técnicas de Laboratório Clínico , Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Feminino , Finlândia , Imunofluorescência , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Testes de Neutralização , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/etiologia , Síndrome Respiratória Aguda Grave/virologia , Proteínas do Envelope Viral
10.
N Engl J Med ; 374(22): 2142-51, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27028667

RESUMO

The current outbreak of Zika virus (ZIKV) infection has been associated with an apparent increased risk of congenital microcephaly. We describe a case of a pregnant woman and her fetus infected with ZIKV during the 11th gestational week. The fetal head circumference decreased from the 47th percentile to the 24th percentile between 16 and 20 weeks of gestation. ZIKV RNA was identified in maternal serum at 16 and 21 weeks of gestation. At 19 and 20 weeks of gestation, substantial brain abnormalities were detected on ultrasonography and magnetic resonance imaging (MRI) without the presence of microcephaly or intracranial calcifications. On postmortem analysis of the fetal brain, diffuse cerebral cortical thinning, high ZIKV RNA loads, and viral particles were detected, and ZIKV was subsequently isolated.


Assuntos
Encéfalo/anormalidades , Feto/anormalidades , Microcefalia/virologia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/complicações , Zika virus/isolamento & purificação , Adulto , Encéfalo/embriologia , Encéfalo/patologia , Encéfalo/virologia , Surtos de Doenças , Feminino , Humanos , Imageamento por Ressonância Magnética , Gravidez , Ultrassonografia Pré-Natal , Viremia , Infecção por Zika virus/epidemiologia
11.
Euro Surveill ; 24(27)2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31290392

RESUMO

The newly identified tick-borne Alongshan virus (ALSV), a segmented Jingmen virus group flavivirus, was recently associated with human disease in China. We report the detection of ALSV RNA in Ixodes ricinus ticks in south-eastern Finland. Screening of sera from patients suspected for tick-borne encephalitis for Jingmen tick virus-like virus RNA and antibodies revealed no human cases. The presence of ALSV in common European ticks warrants further investigations on its role as a human pathogen.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/virologia , Ixodes/virologia , RNA Viral/genética , Soro/virologia , Animais , Sequência de Bases , Finlândia , Humanos , Dados de Sequência Molecular , Filogenia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência
12.
Emerg Infect Dis ; 24(5): 946-948, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29664395

RESUMO

In most locations except for Russia, tick-borne encephalitis is mainly caused by the European virus subtype. In 2015, fatal infections caused by European and Siberian tick-borne encephalitis virus subtypes in the same Ixodes ricinus tick focus in Finland raised concern over further spread of the Siberian subtype among widespread tick species.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , Adulto , Idoso , Animais , Evolução Fatal , Feminino , Finlândia/epidemiologia , Humanos , Masculino , RNA Viral/genética , RNA Viral/isolamento & purificação , Carrapatos/virologia
13.
J Med Virol ; 90(3): 429-435, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28976562

RESUMO

Directly-transmitted rodent-borne zoonotic viruses, such as lymphocytic choriomeningitis virus (LCMV) can cause nervous system infections. Rodent-borne Ljungan virus (LV) is considered potentially zoonotic possibly causing neurological symptoms. Our objective was to understand the role of these two viruses compared to other pathogens in causing neurological infections in Finnish patients. Routine screening data were available for 400 patients aged 5-50 years, collected from December 2013 to December 2014 with suspected neurological infection. Depending on symptoms, patients were variously tested for herpesviruses, enteroviruses, varicella zoster virus, and Mycoplasma pneumoniae, while those suspected of tick bite were further tested for Borrelia spp. and tick-borne encephalitis virus using antibody and/or nucleic acid tests. For 380 patients, we also screened the RNA and antibody prevalence of LCMV and LV in order to test if either of these viruses were the causative agent. Data collected indicated that the causative microbial agent was confirmed in only 15.5% of all Finnish patients with neurological symptoms, with M. pneumoniae (26 cases) being the most common causative agent found in sera, whereas Borrelia spp. (15), herpes simplex viruses (7), and enteroviruses (5) were the most common agents confirmed in the CSF. The seroprevalences for LV and LCMV were 33.8% and 5.0%, respectively, but no samples were PCR-positive. In this study, M. pneumoniae and Borrelia spp. were the most common causative agents of neurological infections in Finland. No LCMV or LV infections were detected. We conclude there was no association of LV with neurological diseases in this patient cohort.


Assuntos
Vírus da Coriomeningite Linfocítica/isolamento & purificação , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/virologia , Parechovirus/isolamento & purificação , Zoonoses/epidemiologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Enterovirus/isolamento & purificação , Feminino , Finlândia/epidemiologia , Humanos , Coriomeningite Linfocítica/líquido cefalorraquidiano , Coriomeningite Linfocítica/epidemiologia , Masculino , Pessoa de Meia-Idade , Mycoplasma pneumoniae/isolamento & purificação , Infecções por Picornaviridae/líquido cefalorraquidiano , Infecções por Picornaviridae/epidemiologia , Roedores , Estudos Soroepidemiológicos , Simplexvirus/isolamento & purificação , Adulto Jovem , Zoonoses/virologia
14.
J Gen Virol ; 98(7): 1744-1748, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28699857

RESUMO

Zika virus (ZIKV) has recently emerged into new areas in the Americas and Asia, causing an epidemic characterized by severe congenital infections. While ZIKV infection is usually asymptomatic or causes mild symptoms, it has now caused a high rate of foetal brain and ocular abnormalities. The underlying reasons for the varying severity of disease outcomes is poorly understood. In this study, we compared the infectivity and replication of three disease-associated Zika viruses of Asian lineage, as well as the prototypic ZIKV strain from Africa. The recent foetal brain isolate FB-GWUH-2016 demonstrated enhanced infectivity and replication over the serum-origin isolates from French Polynesia and Martinique, suggesting differences in the pathogenic properties.


Assuntos
Encéfalo/virologia , Infecção por Zika virus/virologia , Zika virus/crescimento & desenvolvimento , Zika virus/isolamento & purificação , América/epidemiologia , Animais , Ásia/epidemiologia , Culicidae/virologia , Epidemias , Replicação Viral , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/epidemiologia
15.
J Clin Microbiol ; 52(3): 814-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371235

RESUMO

The precursor membrane envelope (prME) proteins of all three tick-borne encephalitis virus (TBEV) subtypes were produced based on expression from Semliki Forest virus (SFV) replicons transcribed from recombinant plasmids. Vero E6 cells transfected by these plasmids showed specific reactivities in immunofluorescence and immunoblot assays by monoclonal antibodies against European and Far-Eastern subtype strains of TBEV, indicating proper folding of the expressed glycoproteins. The prME glycoproteins were secreted into the cell culture supernatant, forming TBEV subviral particles of 20 to 30 nm in diameter. IgM µ-capture and IgG monoclonal antibody (MAb)-capture enzyme immunoassays (EIAs) were developed based on prME Karelia-94 (Siberian subtype) particles. Altogether, 140 human serum samples were tested using these assays, and the results were compared to those obtained with a commercial IgM EIA, an in-house µ-capture IgM assay based on baculovirus-expressed antigen, a commercial IgG EIA, and a hemagglutination inhibition test. Compared to reference enzyme-linked immunosorbent assays (ELISAs), the sensitivities of the generated µ-capture IgM SFV-prME and IgG MAb-capture SFV-prME EIAs were 97.4 to 100% and 98.7%, respectively, and the specificities of the two assays were 100%. IgM and IgG immunofluorescence assays (IFAs) were created based on Vero E6 cells transfected with the recombinant plasmid carrying the TBEV Karelia-94 prME glycoproteins. The IgM IFA was 100% concordant with the µ-capture IgM bac-prME ELISA. The IgG IFA sensitivity and specificity were 98.7% and 100%, respectively, compared to those of the commercial ELISA. In conclusion, the tests developed based on SFV replicon-driven expression of TBEV glycoproteins provide safe and robust alternatives for conducting TBEV serology.


Assuntos
Antígenos Virais , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Proteínas Virais , Virossomos , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/isolamento & purificação , Técnicas de Cultura de Células , Chlorocebus aethiops , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Imunofluorescência/métodos , Vetores Genéticos , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Vírus da Floresta de Semliki/genética , Sensibilidade e Especificidade , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação , Virossomos/genética , Virossomos/imunologia , Virossomos/isolamento & purificação
16.
Virol J ; 11: 115, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24946852

RESUMO

BACKGROUND: Tick-borne encephalitis (TBE) is a central nervous system infection transmitted to humans by ticks. The causative agent, tick-borne encephalitis virus (TBEV), belongs to the genus Flavivirus (family Flaviviridae), which includes globally important arthropod-borne viruses, such as dengue, Yellow fever, Japanese encephalitis and West Nile viruses. Flaviviruses are highly cross-reactive in serological tests that are currently based on viral envelope proteins. The envelope (E) protein is the major antigenic determinant and it is known to induce neutralizing antibody responses. METHODS: We synthesized the full-length TBEV proteome as overlapping synthetic 18-mer peptides to find dominant linear IgG epitopes. To distinguish natural TBEV infections from responses to TBE immunization or other flavivirus infections, the peptides were probed with sera of patients infected with TBEV, West Nile virus (WNV) or dengue virus (DENV), sera from TBE vaccinees and negative control sera by SPOT array technique. RESULTS: We identified novel linear TBEV IgG epitopes in the E protein and in the nonstructural protein 5 (NS5). CONCLUSIONS: In this study, we screened TBEV structural and nonstructural proteins to find linear epitopes specific for TBEV. We found 11 such epitopes and characterized specifically two of them to be potential for differential diagnostics. This is the first report of identifying dominant linear human B-cell epitopes of the whole TBEV genome. The identified peptide epitopes have potential as antigens for diagnosing TBEV and to serologically distinguish flavivirus infections from each other.


Assuntos
Antígenos Virais/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Epitopos de Linfócito B/imunologia , Anticorpos Antivirais/sangue , Mapeamento de Epitopos , Humanos , Imunoglobulina G/sangue , Proteínas não Estruturais Virais/imunologia , Proteínas Estruturais Virais/imunologia
17.
Microbiol Spectr ; 12(4): e0419922, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363137

RESUMO

In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC50 values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE: Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Anticorpos de Domínio Único/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
18.
Virus Res ; 341: 199315, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38211733

RESUMO

Prolonged T cell lymphopenia is common in COVID-19, caused by SARS-CoV-2. While the mechanisms of lymphopenia during COVID-19 remain elusive, it is especially pronounced in a specialized innate-like T cell population called Mucosal Associated Invariant T cells (MAITs). MAITs has been suggested to express Angiotensin-Converting Enzyme 2 (ACE2), which is the well-known cellular receptor for SARS-CoV-2. However, it is still unclear if SARS-CoV-2 can infect or affect MAIT cells directly. In this study, we performed multicolor flow cytometry on peripheral blood mononuclear cells obtained from COVID-19 patients to assess the frequencies of CD8+Vα7.2+CD161+ MAIT subsets at acute and convalescent disease phases. The susceptibility of MAITs and T cells to direct exposure by SARS-CoV-2 was analysed using cells isolated from healthy donor buffy coats by viability assays, virus-specific RT-PCR, and flow cytometry. In situ lung immunofluorescence was used to evaluate retention of T cells, especially MAIT cells, in lung tissues during acute COVID-19. Our study confirms previous reports indicating that circulating MAITs are activated, and their frequency is declined in patients with acute SARS-CoV-2 infection, whereas an accumulation of MAITs and T cells was seen in the lung tissue of individuals with fatal COVID-19. However, despite a fraction of MAITs found to express ACE2, no evidence for the susceptibility of MAITs for direct infection or activation by SARS-CoV-2 particles was observed. Thus, their activation and decline in the circulation is most likely explained by indirect mechanisms involving other immune cells and cytokine-induced pro-inflammatory environment but not by direct exposure to viral particles at the infection site.


Assuntos
COVID-19 , Linfopenia , Células T Invariantes Associadas à Mucosa , Humanos , Enzima de Conversão de Angiotensina 2 , Leucócitos Mononucleares , SARS-CoV-2 , Pulmão
19.
Antiviral Res ; 223: 105813, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272320

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has heavily challenged the global healthcare system. Despite the vaccination programs, the new virus variants are circulating. Further research is required for understanding of the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and for discovery of therapeutic agents against the virus. Here, we took advantage of drug repurposing to identify if existing drugs could inhibit SARS-CoV-2 infection. We established an open high throughput platform for in vitro screening of drugs against SARS-CoV-2 infection. We screened ∼1000 drugs for their ability to inhibit SARS-CoV-2-induced cell death in the African green monkey kidney cell line (Vero-E6), analyzed how the hit compounds affect the viral N (nucleocapsid) protein expression in human cell lines using high-content microscopic imaging and analysis, determined the hit drug targets in silico, and assessed their ability to cause phospholipidosis, which can interfere with the viral replication. Duvelisib was found by in silico interaction assay as a potential drug targeting virus-host protein interactions. The predicted interaction between PARP1 and S protein, affected by Duvelisib, was further validated by immunoprecipitation. Our results represent a rapidly applicable platform for drug repurposing and evaluation of the new emerging viruses' responses to the drugs. Further in silico studies help us to discover the druggable host pathways involved in the infectious cycle of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Chlorocebus aethiops , Reposicionamento de Medicamentos , Bioensaio , Morte Celular , Proteínas do Nucleocapsídeo
20.
J Biol Chem ; 287(42): 35324-35332, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22910914

RESUMO

Influenza A viruses (IAVs) infect humans and cause significant morbidity and mortality. Different treatment options have been developed; however, these were insufficient during recent IAV outbreaks. Here, we conducted a targeted chemical screen in human nonmalignant cells to validate known and search for novel host-directed antivirals. The screen validated saliphenylhalamide (SaliPhe) and identified two novel anti-IAV agents, obatoclax and gemcitabine. Further experiments demonstrated that Mcl-1 (target of obatoclax) provides a novel host target for IAV treatment. Moreover, we showed that obatoclax and SaliPhe inhibited IAV uptake and gemcitabine suppressed viral RNA transcription and replication. These compounds possess broad spectrum antiviral activity, although their antiviral efficacies were virus-, cell type-, and species-specific. Altogether, our results suggest that phase II obatoclax, investigational SaliPhe, and FDA/EMEA-approved gemcitabine represent potent antiviral agents.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Desoxicitidina/análogos & derivados , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/tratamento farmacológico , Pirróis/farmacologia , Salicilatos/farmacologia , Animais , Chlorocebus aethiops , Desoxicitidina/farmacologia , Cães , Humanos , Indóis , Influenza Humana/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Viral/biossíntese , Células Vero , Replicação Viral , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA