Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(48): 26786-97, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25372766

RESUMO

Gold nanoparticles were prepared and characterized on protonated (H-form) titanate nanotubes (TiONTs) and nanowires (TiONWs). The chemical nature and morphology of gold particles were monitored by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and high resolution electron microscopy (HRTEM). The optical properties of Au-containing titanate nanowires were explored by means of ultraviolet-visible diffuse reflectance spectroscopy. The size distribution and homogeneity of gold particles depend on the reduction mode from the corresponding gold salt to metal particles. Smaller clusters (3-8 nm) were obtained with the NaBH4 reactant at 293 K than with molecular hydrogen reduction. An unexpectedly high binding energy gold state was found by XPS in gold-loaded titanate nanostructures. This state was absent from the spectra of gold-loaded TiO2(110). A likely explanation for this phenomenon, supported also by the characteristic decrease of band gap energy from 3.10 eV to 2.74 eV with increasing Au content, is that depending on the metal loading and titanate structure, Au is stabilized on titanate nanowires partially in positively charged gold form by ion exchange and also as Au clusters. Our important new finding is that the thermal annealing behavior of Au-loaded titanate nanotubes and nanowires is different. The former lose their tubular morphology and are readily transformed into anatase even at a very low temperature of 473 K. On the other hand, gold stabilizes the layered structure of titanate nanowires up to 873 K.

2.
Langmuir ; 29(9): 3061-72, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23387804

RESUMO

High-aspect-ratio titanate nanotubes (NT) and nanowires (NW) were produced by the hydrothermal conversion of TiO2 at 400 K. The titanate morphology was studied by high-resolution transmission electron microscopy (HRTEM). The formation of ordered titanate nanoobjects depended on the time of conversion. Shorter synthesis times favored hollow nanotube production while during prolonged treatment the thermodynamically more stable nanowires were formed. Titanate nanotubes and nanowires were decorated by Rh nanoparticles. The structure and stability of titanate nanocomposites were studied by thermal gravimetric (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopic (XPS), Fourier transformed infrared spectroscopic (FTIR), and Raman spectroscopic methods. The nanowires preserve their structure up to 850 K, while the nanotubes start to recrystallize above 600 K. FTIR measurements showed that the water and hydroxyl content gradually decreased with increasing temperature in both cases. XPS data revealed the existence of high binding energy, highly dispersed Rh species on both supports. A small portion of Rh may participate in an ion exchange process. Support transformation phenomena were observed in Rh containing titanate nanowires and nanotubes. Rh decorated nanowires transform into the ß-TiO2 structure, whereas their pristine counterparts' recrystallize into anatase. The formation of anatase was dominant during the thermal annealing process in both acid treated and Rh decorated nanotubes. Transformation to anatase was enhanced in the presence of Rh. The average diameters Rh nanoparticles were 4.9 ± 1.4 and 2.8 ± 0.7 nm in the case of nanowires and nanotubes, respectively.


Assuntos
Nanotubos/química , Nanofios/química , Ródio/química , Titânio/química , Catálise , Propriedades de Superfície , Temperatura
3.
Phys Chem Chem Phys ; 15(38): 15917-25, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23949088

RESUMO

Co nanoparticles were produced and characterized on protonated titanate nanowires. Co deposits were obtained after low-temperature decomposition of Co2(CO)8 on titanate nanostructures. The carbonylation was carried out by vapor-phase adsorption in a fluidized bed reactor and the decarbonylation processes were followed by FT-IR spectroscopy and microbalance combined with temperature programmed reaction mass spectrometry. The band gap of Co-decorated titanate nanostructures determined by UV-VIS diffuse reflectance spectroscopy decreased sharply from 3.14 eV to 2.41 eV with increasing Co content up to 2 wt%. The Co-decorated titanate morphology was characterized by high-resolution transmission electron microscopy (HRTEM) and electron diffraction (ED). The chemical environment of Co deposition was studied by photoelectron spectroscopy (XPS). A certain amount of cobalt underwent an ion exchange process. Higher cobalt loadings led to the formation of nanosized-dispersed particles complexed to oxygen vacancies. The average sizes were found to be mostly between 2 and 6 nm. This size distribution and the measured band gap could be favorable regimes for some important low-temperature thermal- and photo-induced catalytic reactions.


Assuntos
Cobalto/química , Nanofios/química , Titânio/química , Troca Iônica , Íons/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
4.
J Phys Chem A ; 113(29): 8243-8, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19569701

RESUMO

Chemical systems that are far from thermodynamic equilibrium may form complex temporal and spatiotemporal structures. In our paper, we present unusual precipitation patterns that have been observed in the system of Cu(II)-oxalate. Starting with a pellet of copper sulfate immersed in or by pumping copper sulfate solution into a horizontal layer of sodium oxalate solution, we have observed the formation of a precipitate ring and an array of radially oriented thin fingers. The development of these patterns is related to the internal structure of the different crystals, the gravity flow, and the circular symmetry of the experimental arrangement.

5.
Sci Rep ; 7(1): 16594, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185493

RESUMO

On-chip energy storage and management will have transformative impacts in developing advanced electronic platforms with built-in energy needs for operation of integrated circuits driving a microprocessor. Though success in growing stand-alone energy storage elements such as electrochemical capacitors (super and pseusocapacitors) on a variety of substrates is a promising step towards this direction. In this work, on-chip energy storage is demonstrated using architectures of highly aligned vertical carbon nanotubes (CNTs) acting as supercapacitors, capable of providing large device capacitances. The efficiency of these structures is further increased by incorporating electrochemically active nanoparticles such as MnOx to form pseudocapacitive architectures thus enhancing device capacitance areal specific capacitance of 37 mF/cm2. The demonstrated on-chip integration is up and down-scalable, compatible with standard CMOS processes, and offers lightweight energy storage what is vital for portable and autonomous device operation with numerous advantages as compared to electronics built from discrete components.

6.
J Nanosci Nanotechnol ; 5(2): 204-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15853138

RESUMO

A novel, artificial neural network-based method is now available for obtaining the mean diameter of single wall carbon nanotube (SWCNT) samples from the diameter dispersive features of their Raman G-band. The method is demonstrated here for six different diameter SWCNT samples and 14 different excitation wavelengths. With an adequately large pool of standard nanotube samples, the suggested method is a useful complementary technique for SWCNT diameter analysis as it is capable of rapid diameter evaluation without prior knowledge of the relevant phonon dispersion relations.


Assuntos
Inteligência Artificial , Carbono/química , Nanotubos de Carbono/química , Redes Neurais de Computação , Análise Espectral Raman , Estudos de Viabilidade , Nanotecnologia/métodos
7.
Chem Commun (Camb) ; (16): 1730-1, 2002 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12196971

RESUMO

The unusually broad diameter distribution of single wall carbon nanotubes (SWCNTs) in a HiPCO derived sample made it possible to observe for the first time a selective loss of Raman resonances corresponding to large diameter tubes upon both p- (FeCl3) and n-type (K) doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA