Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(29): 20333-20348, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984798

RESUMO

Metal-organic frameworks (MOFs) are porous materials with applications in gas separations and catalysis, but a lack of water stability often limits their practical use given the ubiquity of water. Consequently, it is useful to predict whether a MOF is water-stable before investing time and resources into synthesis. Existing heuristics for designing water-stable MOFs lack generality and limit the diversity of explored chemistry due to narrowly defined criteria. Machine learning (ML) models offer the promise to improve the generality of predictions but require data. In an improvement on previous efforts, we enlarge the available training data for MOF water stability prediction by over 400%, adding 911 MOFs with water stability labels assigned through semiautomated manuscript analysis to curate the new data set WS24. The additional data are shown to improve ML model performance (test ROC-AUC > 0.8) over diverse chemistry for the prediction of both water stability and stability in harsher acidic conditions. We illustrate how the expanded data set and models can be used with a previously developed activation stability model in combination with genetic algorithms to quickly screen ∼10,000 MOFs from a space of hundreds of thousands for candidates with multivariate stability (upon activation, in water, and in acid). We uncover metal- and geometry-specific design rules for robust MOFs. The data set and ML models developed in this work, which we disseminate through an easy-to-use web interface, are expected to contribute toward the accelerated discovery of novel, water-stable MOFs for applications such as direct air gas capture and water treatment.

2.
J Am Chem Soc ; 146(14): 10115-10123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554100

RESUMO

Hydrogen fluoride (HF) is a versatile reagent for material transformation, with applications in self-immolative polymers, remodeled siloxanes, and degradable polymers. The responsive in situ generation of HF in materials therefore holds promise for new classes of adaptive material systems. Here, we report the mechanochemically coupled generation of HF from alkoxy-gem-difluorocyclopropane (gDFC) mechanophores derived from the addition of difluorocarbene to enol ethers. Production of HF involves an initial mechanochemically assisted rearrangement of gDFC mechanophore to α-fluoro allyl ether whose regiochemistry involves preferential migration of fluoride to the alkoxy-substituted carbon, and ab initio steered molecular dynamics simulations reproduce the observed selectivity and offer insights into the mechanism. When the alkoxy gDFC mechanophore is derived from poly(dihydrofuran), the α-fluoro allyl ether undergoes subsequent hydrolysis to generate 1 equiv of HF and cleave the polymer chain. The hydrolysis is accelerated via acid catalysis, leading to self-amplifying HF generation and concomitant polymer degradation. The mechanically generated HF can be used in combination with fluoride indicators to generate an optical response and to degrade polybutadiene with embedded HF-cleavable silyl ethers (11 mol %). The alkoxy-gDFC mechanophore thus provides a mechanically coupled mechanism of releasing HF for polymer remodeling pathways that complements previous thermally driven mechanisms.

3.
J Am Chem Soc ; 146(15): 10943-10952, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581383

RESUMO

Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s-1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.

4.
Inorg Chem ; 63(11): 4997-5011, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38428015

RESUMO

We study active-site models of nonheme iron hydroxylases and their vanadium-based mimics using density functional theory to determine if vanadyl is a faithful structural mimic. We identify crucial structural and energetic differences between ferryl and vanadyl isomers owing to the differences in their ground electronic states, i.e., high spin (HS) for Fe and low spin (LS) for V. For the succinate cofactor bound to the ferryl intermediate, we predict facile interconversion between monodentate and bidentate coordination isomers for ferryl species but difficult rearrangement for vanadyl mimics. We study isomerization of the oxo intermediate between axial and equatorial positions and find the ferryl potential energy surface to be characterized by a large barrier of ca. 10 kcal/mol that is completely absent for the vanadyl mimic. This analysis reveals even starker contrasts between Fe and V in hydroxylases than those observed for this metal substitution in nonheme halogenases. Analysis of the relative bond strengths of coordinating carboxylate ligands for Fe and V reveals that all of the ligands show stronger binding to V than Fe owing to the LS ground state of V in contrast to the HS ground state of Fe, highlighting the limitations of vanadyl mimics of native nonheme iron hydroxylases.


Assuntos
Ferro , Vanádio , Vanadatos , Eletrônica , Oxigenases de Função Mista
5.
Inorg Chem ; 63(31): 14609-14622, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39049593

RESUMO

Metal-organic cages form well-defined microenvironments that can enhance the catalytic proficiency of encapsulated transition metal complexes (TMCs). We introduce a screening protocol to efficiently identify TMCs that are promising candidates for encapsulation in the Ga4L612- nanocage. We obtain TMCs from the Cambridge Structural Database with geometric and electronic characteristics amenable to encapsulation and mine the text of associated manuscripts to curate TMCs with documented catalytic functionality. By docking candidate TMCs inside the nanocage cavity and carrying out electronic structure calculations, we identify a subset of successfully optimized candidates (TMC-34) and observe that encapsulated guests occupy an average of 60% of the cavity volume, in line with previous observations. Notably, some guests occupy as much as 72% of the cavity as a result of linker rotation. Encapsulation has a universal effect on the electrostatic potential (ESP), systematically decreasing the ESP at the metal center of each TMC in the TMC-34 data set, while minimally altering TMC metal partial charges. Collectively these observations support geometry-based screening of potential guests and suggest that encapsulation in Ga4L612- cages could electrostatically stabilize diverse cationic or electropositive intermediates. We highlight candidate guests with associated known reactivity and solubility most amenable for encapsulation in experimental follow-up studies.

6.
J Phys Chem A ; 128(1): 204-216, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38148525

RESUMO

Spin-crossover (SCO) complexes are materials that exhibit changes in the spin state in response to external stimuli, with potential applications in molecular electronics. It is challenging to know a priori how to design ligands to achieve the delicate balance of entropic and enthalpic contributions needed to tailor a transition temperature close to room temperature. We leverage the SCO complexes from the previously curated SCO-95 data set [Vennelakanti et al. J. Chem. Phys. 159, 024120 (2023)] to train three machine learning (ML) models for transition temperature (T1/2) prediction using graph-based revised autocorrelations as features. We perform feature selection using random forest-ranked recursive feature addition (RF-RFA) to identify the features essential to model transferability. Of the ML models considered, the full feature set RF and recursive feature addition RF models perform best, achieving moderate correlation to experimental T1/2 values. We then compare ML T1/2 predictions to those from three previously identified best-performing density functional approximations (DFAs) which accurately predict SCO behavior across SCO-95, finding that the ML models predict T1/2 more accurately than the best-performing DFAs. In addition, we study ML model predictions for a set of 18 SCO complexes for which only estimated T1/2 values are available. Upon excluding outliers from this set, the RF-RFA RF model shows a strong correlation to estimated T1/2 values with a Pearson's r of 0.82. In contrast, DFA-predicted T1/2 values have large errors and show no correlation to estimated T1/2 values over the same set of complexes. Overall, our study demonstrates slightly superior performance of ML models in comparison with some of the best-performing DFAs, and we expect ML models to improve further as larger data sets of SCO complexes are curated and become available for model training.

7.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624114

RESUMO

While computational screening with density functional theory (DFT) is frequently employed for the screening of metal-organic frameworks (MOFs) for gas separation and storage, commonly applied generalized gradient approximations (GGAs) exhibit self-interaction errors, which hinder the predictions of adsorption energies. We investigate the Hubbard U parameter to augment DFT calculations for full periodic MOFs, targeting a more precise modeling of gas molecule-MOF interactions, specifically for N2, CO2, and O2. We introduce a calibration scheme for the U parameter, which is tailored for each MOF, by leveraging higher-level calculations on the secondary building unit (SBU) of the MOF. When applied to the full periodic MOF, the U parameter calibrated against hybrid HSE06 calculations of SBUs successfully reproduces hybrid-quality calculations of the adsorption energy of the periodic MOF. The mean absolute deviation of adsorption energies reduces from 0.13 eV for a standard GGA treatment to 0.06 eV with the calibrated U, demonstrating the utility of the calibration procedure when applied to the full MOF structure. Furthermore, attempting to use coupled cluster singles and doubles with perturbative triples calculations of isolated SBUs for this calibration procedure shows varying degrees of success in predicting the experimental heat of adsorption. It improves accuracy for N2 adsorption for cases of overbinding, whereas its impact on CO2 is minimal, and ambiguities in spin state assignment hinder consistent improvements of O2 adsorption. Our findings emphasize the limitations of cluster models and advocate the use of full periodic MOF systems with a calibrated U parameter, providing a more comprehensive understanding of gas adsorption in MOFs.

8.
Angew Chem Int Ed Engl ; 63(18): e202401808, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38404222

RESUMO

The discovery of new compounds with pharmacological properties is usually a lengthy, laborious and expensive process. Thus, there is increasing interest in developing workflows that allow for the rapid synthesis and evaluation of libraries of compounds with the aim of identifying leads for further drug development. Herein, we apply combinatorial synthesis to build a library of 90 iridium(III) complexes (81 of which are new) over two synthesise-and-test cycles, with the aim of identifying potential agents for photodynamic therapy. We demonstrate the power of this approach by identifying highly active complexes that are well-tolerated in the dark but display very low nM phototoxicity against cancer cells. To build a detailed structure-activity relationship for this class of compounds we have used density functional theory (DFT) calculations to determine some key electronic parameters and study correlations with the experimental data. Finally, we present an optimised semi-automated synthesise-and-test protocol to obtain multiplex data within 72 hours.


Assuntos
Antineoplásicos , Complexos de Coordenação , Fotoquimioterapia , Irídio/farmacologia , Antineoplásicos/farmacologia , Fotoquimioterapia/métodos , Relação Estrutura-Atividade , Complexos de Coordenação/farmacologia
9.
Science ; 384(6703): 1468-1476, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935726

RESUMO

The aza Paternò-Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò-Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light-mediated aza Paternò-Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of epi-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔGǂ) values and ultimately promotes reactivity.

10.
Nat Commun ; 15(1): 3951, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730254

RESUMO

Supramolecular polymer networks contain non-covalent cross-links that enable access to broadly tunable mechanical properties and stimuli-responsive behaviors; the incorporation of multiple unique non-covalent cross-links within such materials further expands their mechanical responses and functionality. To date, however, the design of such materials has been accomplished through discrete combinations of distinct interaction types in series, limiting materials design logic. Here we introduce the concept of leveraging "nested" supramolecular crosslinks, wherein two distinct types of non-covalent interactions exist in parallel, to control bulk material functions. To demonstrate this concept, we use polymer-linked Pd2L4 metal-organic cage (polyMOC) gels that form hollow metal-organic cage junctions through metal-ligand coordination and can exhibit well-defined host-guest binding within their cavity. In these "nested" supramolecular network junctions, the thermodynamics of host-guest interactions within the junctions affect the metal-ligand interactions that form those junctions, ultimately translating to substantial guest-dependent changes in bulk material properties that could not be achieved in traditional supramolecular networks with multiple interactions in series.

11.
Chem Commun (Camb) ; 60(36): 4842-4845, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619444

RESUMO

Second row elements in small- and medium-rings modulate strain. Herein we report the synthesis of two novel oligosilyl-containing cycloalkynes that exhibit angle-strain, as observed by X-ray crystallography. However, the angle-strained sila-cyclooctynes are sluggish participants in cycloadditions with benzyl azide. A distortion-interaction model analysis based on density functional theory calculations was performed.

12.
ACS Macro Lett ; 13(5): 621-626, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38700544

RESUMO

Thioesters are an essential functional group in biosynthetic pathways, which has motivated their development as reactive handles in probes and peptide assembly. Thioester exchange is typically accelerated by catalysts or elevated pH. Here, we report the use of bifunctional aromatic thioesters as dynamic covalent cross-links in hydrogels, demonstrating that at physiologic pH in aqueous conditions, transthioesterification facilitates stress relaxation on the time scale of hundreds of seconds. We show that intramolecular hydrogen bonding is responsible for accelerated exchange, evident in both molecular kinetics and macromolecular stress relaxation. Drawing from concepts in the vitrimer literature, this system exemplifies how dynamic cross-links that exchange through an associative mechanism enable tunable stress relaxation without altering stiffness.

13.
Adv Mater ; 36(27): e2312382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38632844

RESUMO

Metal-organic frameworks (MOFs) are promising materials for gas sensing but are often limited to single-use detection. A hybridization strategy is demonstrated synergistically deploying conductive MOFs (cMOFs) and conductive polymers (cPs) as two complementary mixed ionic-electronic conductors in high-performing stand-alone chemiresistors. This work presents significant improvement in i) sensor recovery kinetics, ii) cycling stability, and iii) dynamic range at room temperature. The effect of hybridization across well-studied cMOFs is demonstrated based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7,10,11-hexaiminotriphenylene (HITP) ligands with varied metal nodes (Co, Cu, Ni). A comprehensive mechanistic study is conducted to relate energy band alignments at the heterojunctions between the MOFs and the polymer with sensing thermodynamics and binding kinetics. The findings reveal that hole enrichment of the cMOF component upon hybridization leads to selective enhancement in desorption kinetics, enabling significantly improved sensor recovery at room temperature, and thus long-term response retention. This mechanism is further supported by density functional theory calculations on sorbate-analyte interactions. It is also found that alloying cPs and cMOFs enables facile thin film co-processing and device integration, potentially unlocking the use of these hybrid conductors in diverse electronic applications.

14.
Nat Comput Sci ; 3(12): 1045-1055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38177724

RESUMO

Transition state search is key in chemistry for elucidating reaction mechanisms and exploring reaction networks. The search for accurate 3D transition state structures, however, requires numerous computationally intensive quantum chemistry calculations due to the complexity of potential energy surfaces. Here we developed an object-aware SE(3) equivariant diffusion model that satisfies all physical symmetries and constraints for generating sets of structures-reactant, transition state and product-in an elementary reaction. Provided reactant and product, this model generates a transition state structure in seconds instead of hours, which is typically required when performing quantum-chemistry-based optimizations. The generated transition state structures achieve a median of 0.08 Å root mean square deviation compared to the true transition state. With a confidence scoring model for uncertainty quantification, we approach an accuracy required for reaction barrier estimation (2.6 kcal mol-1) by only performing quantum chemistry-based optimizations on 14% of the most challenging reactions. We envision usefulness for our approach in constructing large reaction networks with unknown mechanisms.

15.
Nat Comput Sci ; 3(1): 38-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177951

RESUMO

Approximate density functional theory has become indispensable owing to its balanced cost-accuracy trade-off, including in large-scale screening. To date, however, no density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from density functional theory. With electron density fitting and Δ-learning, we build a DFA recommender that selects the DFA with the lowest expected error with respect to the gold standard (but cost-prohibitive) coupled cluster theory in a system-specific manner. We demonstrate this recommender approach on the evaluation of vertical spin splitting energies of transition metal complexes. Our recommender predicts top-performing DFAs and yields excellent accuracy (about 2 kcal mol-1) for chemical discovery, outperforming both individual Δ-learning models and the best conventional single-functional approach from a set of 48 DFAs. By demonstrating transferability to diverse synthesized compounds, our recommender potentially addresses the accuracy versus scope dilemma broadly encountered in computational chemistry.

16.
J Cheminform ; 15(1): 121, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111020

RESUMO

With the increasingly more important role of machine learning (ML) models in chemical research, the need for putting a level of confidence to the model predictions naturally arises. Several methods for obtaining uncertainty estimates have been proposed in recent years but consensus on the evaluation of these have yet to be established and different studies on uncertainties generally uses different metrics to evaluate them. We compare three of the most popular validation metrics (Spearman's rank correlation coefficient, the negative log likelihood (NLL) and the miscalibration area) to the error-based calibration introduced by Levi et al. (Sensors 2022, 22, 5540). Importantly, metrics such as the negative log likelihood (NLL) and Spearman's rank correlation coefficient bear little information in themselves. We therefore introduce reference values obtained through errors simulated directly from the uncertainty distribution. The different metrics target different properties and we show how to interpret them, but we generally find the best overall validation to be done based on the error-based calibration plot introduced by Levi et al. Finally, we illustrate the sensitivity of ranking-based methods (e.g. Spearman's rank correlation coefficient) towards test set design by using the same toy model ferent test sets and obtaining vastly different metrics (0.05 vs. 0.65).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA