Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Euro Surveill ; 27(10)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35272748

RESUMO

BackgroundThroughout the COVID-19 pandemic, SARS-CoV-2 genetic variants of concern (VOCs) have repeatedly and independently arisen. VOCs are characterised by increased transmissibility, increased virulence or reduced neutralisation by antibodies obtained from prior infection or vaccination. Tracking the introduction and transmission of VOCs relies on sequencing, typically whole genome sequencing of clinical samples. Wastewater surveillance is increasingly used to track the introduction and spread of SARS-CoV-2 variants through sequencing approaches.AimHere, we adapt and apply a rapid, high-throughput method for detection and quantification of the relative frequency of two deletions characteristic of the Alpha, Beta, and Gamma VOCs in wastewater.MethodsWe developed drop-off RT-dPCR assays and an associated statistical approach implemented in the R package WWdPCR to analyse temporal dynamics of SARS-CoV-2 signature mutations (spike Δ69-70 and ORF1a Δ3675-3677) in wastewater and quantify transmission fitness advantage of the Alpha VOC.ResultsBased on analysis of Zurich wastewater samples, the estimated transmission fitness advantage of SARS-CoV-2 Alpha based on the spike Δ69-70 was 0.34 (95% confidence interval (CI): 0.30-0.39) and based on ORF1a Δ3675-3677 was 0.53 (95% CI: 0.49-0.57), aligning with the transmission fitness advantage of Alpha estimated by clinical sample sequencing in the surrounding canton of 0.49 (95% CI: 0.38-0.61).ConclusionDigital PCR assays targeting signature mutations in wastewater offer near real-time monitoring of SARS-CoV-2 VOCs and potentially earlier detection and inference on transmission fitness advantage than clinical sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Suíça/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
Appl Environ Microbiol ; 87(20): e0098021, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347517

RESUMO

Opportunistic pathogens can linger on surfaces in hospital and building plumbing environments, leading to infections in at-risk populations. Furthermore, biofilm-associated bacteria are protected from removal and inactivation protocols such as disinfection. Bacteriophages show promise as tools to treat antibiotic-resistant infections. As such, phages may also be useful in environmental applications to prevent newly acquired infections. In the current study, the potential of synergies between bacteriophage and chemical disinfection against the opportunistic pathogen Pseudomonas aeruginosa was assessed under various conditions. Specifically, surface-associated P. aeruginosa was treated with various concentrations of phages (P1 or JG004), chemical disinfectants (sodium hypochlorite or benzalkonium chloride), or combined sequential treatments under three distinct attachment models (spot inoculations, dry biofilms, and wet biofilms). Phages were very effective at removing bacteria in spot inoculations (>3.2 log10 removal) and wet biofilms (up to 2.6 log10 removal), while phages prevented the regrowth of dry biofilms in the application time. In addition, phage treatment followed by chemical disinfection inactivated P. aeruginosa cells under wet biofilm conditions better than either treatment alone. This effect was hindered when chemical disinfection was applied first, followed by phage treatment, suggesting that the additive benefits of combination treatments are lost when phage is applied last. Furthermore, we confirm previous evidence of greater phage tolerance to benzalkonium chloride than to sodium hypochlorite, informing choices for combination phage-disinfectant approaches. Overall, this paper further supports the potential of using combination phage and chemical disinfectant treatments to improve the inactivation of surface-associated P. aeruginosa. IMPORTANCE Phages are already utilized in the health care industry to treat antibiotic-resistant infections, such as those on implant-associated biofilms and in compassionate-care cases. Phage treatment could also be a promising new tool to control pathogens in the built environment, preventing infections from occurring. This study shows that phages can be combined effectively with chemical disinfectants to improve the removal of wet biofilms and bacteria spotted onto surfaces while preventing regrowth in dry biofilms. This has the potential to improve pathogen containment within the built environment and drinking water infrastructure to prevent infections by opportunistic pathogens.


Assuntos
Bacteriófagos , Compostos de Benzalcônio/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/virologia , Hipoclorito de Sódio/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Plásticos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia
3.
Environ Health Perspect ; 130(5): 57011, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617001

RESUMO

BACKGROUND: The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clinical testing or reporting strategies change. OBJECTIVES: We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to estimate Re in near real time, independent of clinical data and without the associated biases. METHODS: We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to the daily COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence. RESULTS: The method to estimate Re from wastewater worked robustly on data from two different countries and two wastewater matrices. The resulting estimates were as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. DISCUSSION: To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low-cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens. https://doi.org/10.1289/EHP10050.


Assuntos
COVID-19 , SARS-CoV-2 , Número Básico de Reprodução , COVID-19/epidemiologia , Humanos , RNA Viral , Águas Residuárias
4.
Nat Microbiol ; 7(8): 1151-1160, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851854

RESUMO

The continuing emergence of SARS-CoV-2 variants of concern and variants of interest emphasizes the need for early detection and epidemiological surveillance of novel variants. We used genomic sequencing of 122 wastewater samples from three locations in Switzerland to monitor the local spread of B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants of SARS-CoV-2 at a population level. We devised a bioinformatics method named COJAC (Co-Occurrence adJusted Analysis and Calling) that uses read pairs carrying multiple variant-specific signature mutations as a robust indicator of low-frequency variants. Application of COJAC revealed that a local outbreak of the Alpha variant in two Swiss cities was observable in wastewater up to 13 d before being first reported in clinical samples. We further confirmed the ability of COJAC to detect emerging variants early for the Delta variant by analysing an additional 1,339 wastewater samples. While sequencing data of single wastewater samples provide limited precision for the quantification of relative prevalence of a variant, we show that replicate and close-meshed longitudinal sequencing allow for robust estimation not only of the local prevalence but also of the transmission fitness advantage of any variant. We conclude that genomic sequencing and our computational analysis can provide population-level estimates of prevalence and fitness of emerging variants from wastewater samples earlier and on the basis of substantially fewer samples than from clinical samples. Our framework is being routinely used in large national projects in Switzerland and the UK.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Genômica , Humanos , SARS-CoV-2/genética , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA