Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(10): 5006-5018, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37656937

RESUMO

Tenofovir disoproxil fumarate (TDF)-loaded bioadhesive chitosan microparticles (CM) were developed by an emulsification internal gelation technique. Among different batches produced, ECH-4 was found to display a high % entrapment efficiency (68.93 ± 1.76%) and sustained drug release of 88.05 ± 0.38% at 24 h. Solid state characterization of ECH-4 employing DSC and PXRD indicated that the TDF existed in an amorphous state as a solid-solid solution in chitosan. Scanning electron microscopy revealed CM of ECH-4 was spherical in shape with a rough surface topography. Laser scattering analysis using Malvern Master sizer indicated that particle size of ECH-4 was in the range of 0.52 ± 0.10 µm to 284.79 ± 21.42 µm with a surface-mean diameter of 12.41 ± 0.06 µm. Ex vivo mucoadhesion studies using rabbit mucosa as a substrate indicated that 10.34 ± 2.08% of CM of ECH-4 was retained at the end of 24 h. The microparticles of ECH-4 were incorporated into dispersible tablets (DT-TCM) intended for intravaginal administration, in view to arrest the pre-exposure transmission of HIV during sexual intercourse. In vitro release from the dispersible tablet (F3) into simulated vaginal fluid (pH 4.5) displayed a sustained release profile of TDF as 89.98 ± 1.61% of TDF was released at 24 h. The in vitro dissolution profile of the DT-TCM was found to be similar to that of TDF loaded CM with the values of f1 (difference factor) and f2 (similarity factor) being 1.52 and 78.02, respectively. Therefore, DT-TCM would be a promising novel drug delivery platform for pre-exposure prophylaxis against HIV.


Assuntos
Fármacos Anti-HIV , Quitosana , Infecções por HIV , Profilaxia Pré-Exposição , Humanos , Feminino , Animais , Coelhos , Tenofovir/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Fármacos Anti-HIV/uso terapêutico , Cremes, Espumas e Géis Vaginais/uso terapêutico , Profilaxia Pré-Exposição/métodos , Comprimidos
2.
Int J Biol Macromol ; 258(Pt 1): 128816, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114000

RESUMO

The research aimed to develop novel bioadhesive sodium alginate (Na-Alg) microspheres laden pessaries for intravaginal delivery of tenofovir disoproxil fumarate (TDF), to overcome limitations of conventional dosage forms. Twelve batches of microspheres formulated by emulsification gelation method indicated that drug-polymer ratios and polymer type affected particle size, drug release, and entrapment efficiency (%EE). Microspheres of batch EH-8 with drug: polymer ratio of 1:4 containing equal amounts of Na-Alg and HPMC K100M displayed optimal %EE (62.09 ± 1.34 %) and controlled drug release (97.02 ± 4.54 % in 12 h). Particle size analysis in Matersizer indicated that microspheres (EH-8) displayed a surface-mean diameter of 11.06 ± 0.18 µm. Ex-vivo mucoadhesion studies on rabbit mucosa indicated that microspheres (EH-8) adhered well for 12 h. Microspheres integrated into pessaries displayed a sustained release profile (95.31 ± 1.37 % in 12 h) in simulated vaginal fluid. In vivo studies in rabbits indicated that pessaries displayed a significantly higher Cmax (41.18 ± 3.57 ng/mL) (P < 0.005) and reduced Tmax (1.00 ± 0.01 h) (P < 0.0001) of TDF concentrations in vaginal fluid compared to oral tablets. The microparticulate pessaries with the ability to elicit higher vaginal fluid levels in the crucial initial hours of insertion demonstrates a potential novel platform to offer better self-protection to HIV-negative women against HIV during sexual intercourse.


Assuntos
Alginatos , Infecções por HIV , Animais , Feminino , Humanos , Coelhos , Tenofovir , Microesferas , Alginatos/uso terapêutico , Pessários , Administração Intravaginal , Infecções por HIV/tratamento farmacológico , Polímeros/uso terapêutico
3.
J Biomater Sci Polym Ed ; 35(3): 364-396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982815

RESUMO

Natural products are generally preferred medications owing to their low toxicity and irritancy potential. However, a good number of herbal therapeutics (HT) exhibit solubility, permeability and stability issues that eventually affect oral bioavailability. Transdermal administration has been successful in resolving some of these issues which has lead in commercialization of a few herbal transdermal products. Polymeric Microneedles (MNs) has emerged as a promising platform in transdermal delivery of HT that face problems in permeating the skin. Several biocompatible and biodegradable polymers used in the fabrication of MNs have been discussed. MNs have been exploited for cutaneous delivery of HT in management of skin ailments like skin cancer, acne, chronic wounds and hypertrophic scar. Considering the clinical need, MNs are explored for systemic delivery of potent HT for management of diverse disorders like asthma, disorders of central nervous system and nicotine replacement as it obviates first pass metabolism and elicits a quicker onset of therapeutic response. MNs of HT have found good number of aesthetic applications in topical delivery of HT to the skin. Interestingly, MNs have emerged as an attractive option as a minimally invasive diagnostic aid in sampling biomarkers from plants, skin and ocular interstitial fluid. The review updates the progress made by MN technology of HT for multiple therapeutic interventions along with the future challenges. An attempt is made to illustrate the challenging formulation strategies employed in the fabrication of polymeric MNs of HT. Efforts are on to extend the potential applications of polymeric MNs to HT for diverse therapeutic applications.


Assuntos
Abandono do Hábito de Fumar , Administração Cutânea , Sistemas de Liberação de Medicamentos , Agulhas , Dispositivos para o Abandono do Uso de Tabaco , Pele , Polímeros/metabolismo
4.
Pharmaceutics ; 16(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39065563

RESUMO

Cefdinir (CEF) is a semi-synthetic third-generation broad-spectrum oral cephalosporin that exhibits poor solubility at lower pH values. Considering this, pH-modulated CEF solid dispersions (ASDs) were produced by solvent evaporation method employing various hydrophilic carriers and alkalizers. Among different carriers, ASDs produced using PEG 6000 with meglumine as alkalizer were found to significantly increase (p < 0.005) the drug solubility (4.50 ± 0.32 mg/mL) in pH 1.2. Fourier transform infrared spectrophotometry confirmed chemical integrity of CEF while differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) indicated CEF was reduced to an amorphous state in ASD8. Antimicrobial assay performed by well diffusion method against Staphylococcus aureus (MTCC96) and Escherichia coli (MTCC118) demonstrated significantly superior (p < 0.001) efficacy of CEFSD compared to CEF. The porous orodispersible tablets (ODTs) of ASD8 (batch F5) were developed by incorporating ammonium bicarbonate as a subliming agent by direct compression, followed by vacuum drying displayed quick disintegration (27.11 ± 1.96 s) that met compendial norms and near-complete dissolution (93.85 ± 1.27%) in 30 min. The ODTs of ASD8 appear to be a promising platform to mitigate the pH-dependent solubility and dissolution issues associated with CEF in challenging physiological pH conditions prevalent in stomach. Thus, ODTs of ASD8 are likely to effectively manage various infections and avoid development of drug-resistant strains, thereby improving the curing rates.

5.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004454

RESUMO

Nisoldipine (NIS) is a calcium channel blocker that exhibits poor bioavailability (~5%) due to low aqueous solubility and presystemic metabolism in the gut wall. In this context, the present work aimed to develop NIS solid dispersion (NISSD)-based sublingual films using solvent casting technique to improve the dissolution. Phase solubility studies indicated that Soluplus® was the most effective carrier for improving the aqueous solubility of NIS. NISSDs were initially developed using the solvent evaporation method. Fourier transform infrared spectrometric studies were found to display the characteristic vibrational bands related to C=O stretching and N-H deformation in NISSDs, proving the chemical integrity of the drug in NISSDs. Subsequently, bioadhesive sublingual films of NISSDs were formulated using solvent casting method, using hydroxypropyl methyl cellulose (HPMC) E5, E15, and hydroxy ethyl cellulose (HEC EF) as hydrophilic polymers and polyethylene glycol 400 (PEG 400) as plasticizer. The incorporation of NISSDs was found to produce clear films that displayed uniform content. The sublingual film of NISSDs composed of HPMC E5 (2% w/v), was found to display the least thickness (0.29 ± 0.02 mm), the highest folding endurance (168.66 ± 4.50 times), and good bioadhesion strength (12.73 ± 0.503 g/cm2). This film was found to rapidly disintegrate (28.66 ± 3.05 sec) and display near-complete drug release (94.24 ± 1.22) in 30 min. Incorporating NISSDs into rapidly bioadhesive sublingual films considerably improves drug dissolution. Overall, these research outcomes underscored the potential of rapidly dissolving bioadhesive sublingual films to evade gut metabolism and resolve the bioavailability issues associated with oral administration of NIS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA