Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163946

RESUMO

Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.

2.
Microb Cell Fact ; 23(1): 187, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951813

RESUMO

BACKGROUND: Plastic is widely utilized in packaging, frameworks, and as coverings material. Its overconsumption and slow degradation, pose threats to ecosystems due to its toxic effects. While polyhydroxyalkanoates (PHA) offer a sustainable alternative to petroleum-based plastics, their production costs present significant obstacles to global adoption. On the other side, a multitude of household and industrial activities generate substantial volumes of wastewater containing both organic and inorganic contaminants. This not only poses a threat to ecosystems but also presents opportunities to get benefits from the circular economy. Production of bioplastics may be improved by using the nutrients and minerals in wastewater as a feedstock for microbial fermentation. Strategies like feast-famine culture, mixed-consortia culture, and integrated processes have been developed for PHA production from highly polluted wastewater with high organic loads. Various process parameters like organic loading rate, organic content (volatile fatty acids), dissolved oxygen, operating pH, and temperature also have critical roles in PHA accumulation in microbial biomass. Research advances are also going on in downstream and recovery of PHA utilizing a combination of physical and chemical (halogenated solvents, surfactants, green solvents) methods. This review highlights recent developments in upcycling wastewater resources into PHA, encompassing various production strategies, downstream processing methodologies, and techno-economic analyses. SHORT CONCLUSION: Organic carbon and nitrogen present in wastewater offer a promising, cost-effective source for producing bioplastic. Previous attempts have focused on enhancing productivity through optimizing culture systems and growth conditions. However, despite technological progress, significant challenges persist, such as low productivity, intricate downstream processing, scalability issues, and the properties of resulting PHA.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Fermentação , Bactérias/metabolismo , Biodegradação Ambiental
3.
J Environ Manage ; 353: 120135, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38286068

RESUMO

The microalgae can be converted into biofuels, biochemicals, and bioactive compounds in a biorefinery. Recently, designing and executing more viable and sustainable biofuel production from microalgal biomass is one of the vital challenges in the development of biorefinery. Scalable cultivation of microalgae is mandatory for commercializing and industrializing the biorefinery. The intrinsic complication in cultivation of microalgae is the physiological and operational factors that renders challenging impact to enable a smooth and profitable operation. However, this aim can only be successful via a simulation prospect. Machine learning tools provides advanced approaches for evaluating, predicting, and controlling uncertainties in microalgal biorefinery for sustainable biofuel production. The present review provides a critical evaluation of the most progressing machine learning tools that validate a potential to be employed in microalgal biorefinery. These tools are highly potential for their extensive evaluation on microalgal screening and classification. However, the application of these tools for optimization of microalgal biomass cultivation in industries in order to increase the biomass production, is still in its initial stages. Integrated hybrid machine learning tools can aid the industries to function efficiently with least resources. Some of the challenges, and perspectives of machine learning tools are discussed. Besides, future prospects are also emphasized. Though, most of the research reports on machine learning tools are not appropriate to gather generalized information, standard protocols and strategies must be developed to design generalized machine learning tools. On a whole, this review offers a perspective information about digitalized microalgal exploitation in a microalgal biorefinery.


Assuntos
Biocombustíveis , Microalgas , Biomassa
4.
Environ Res ; 235: 116635, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454801

RESUMO

The present study aimed to improve the hydrolysis potential of paper mill sludge through a two-phase disintegration process. In Particular, attention was focused on removal of extracellular polymeric substance (EPS) i.e. deflocculation of sludge in order to improve the efficiency of subsequent disperser disintegration. During deflocculation, carbohydrate, protein and deoxyribonucleic acids (DNA) were used as assessment parameters. During disintegration, soluble chemical oxygen demand (SCOD) and suspended solids (SS) reduction were used as assessment index to evaluate the efficiency of disintegration. A greater EPS removal was attained while deflocculating the sludge at calcium peroxide dosage of 0.05 g/g suspended solids (SS) and at a temperature of 70 °C. When comparing the disintegrated samples, a clear variation was noted in deflocculated and disintegrated sludge (19.2%) than the disintegrated sludge alone (13.5%). This clearly shows the need for deflocculation prior to disintegration. Likewise, a higher biomethane production of 0.214 L/g COD was achieved in deflocculated and disintegrated sludge than the pretreated sludge alone. Deflocculation reduces sludge management cost from 170 USD (Disperser alone (D alone disintegration)) to 51 USD (Thermal calcium peroxide mediated-Disperser (TCaO2-D disintegration), indicating the efficiency of the proposed disintegration.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Anaerobiose , Floculação , Análise da Demanda Biológica de Oxigênio , Eliminação de Resíduos Líquidos
5.
Environ Res ; 216(Pt 2): 114400, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265604

RESUMO

Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.


Assuntos
Lignina , Xilanos , Lignina/química , Celulose/química , Biomassa
6.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175402

RESUMO

Plastics-based materials have a high carbon footprint, and their disposal is a considerable problem for the environment. Biodegradable bioplastics represent an alternative on which most countries have focused their attention to replace of conventional plastics in various sectors, among which food packaging is the most significant one. The evaluation of the optimal end-of-life process for bioplastic waste is of great importance for their sustainable use. In this review, the advantages and limits of different waste management routes-biodegradation, mechanical recycling and thermal degradation processes-are presented for the most common categories of biopolymers on the market, including starch-based bioplastics, PLA and PBAT. The analysis outlines that starch-based bioplastics, unless blended with other biopolymers, exhibit good biodegradation rates and are suitable for disposal by composting, while PLA and PBAT are incompatible with this process and require alternative strategies. The thermal degradation process is very promising for chemical recycling, enabling building blocks and the recovery of valuable chemicals from bioplastic waste, according to the principles of a sustainable and circular economy. Nevertheless, only a few articles have focused on this recycling process, highlighting the need for research to fully exploit the potentiality of this waste management route.


Assuntos
Compostagem , Gerenciamento de Resíduos , Plásticos/metabolismo , Biopolímeros/metabolismo , Reciclagem , Amido , Poliésteres
7.
J Environ Manage ; 298: 113429, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358941

RESUMO

Sludge management represents a critical challenge because of complex compositions and poor dewaterability. Fe2+-activated persulfate oxidation (Fe2+/S2O82-) is an effective, and widely investigated method for enhancing sludge dewatering. However, the potential effects of Fe2+/S2O82- on sludge drying efficiency, anaerobic biodegradation behaviors and potential recycling of sludge residua are not yet well-known. In this study, a new sludge disposal route (step i: enhanced dewatering via Fe2+/S2O82-, and step ii: drying-incineration or anaerobic digestion) was proposed and appraised comprehensively. Results showed that Fe2+/S2O82- oxidation destroyed extracellular polymeric substances, lysed sludge cells and enhanced the dewaterability greatly. Capillary suction time and mechanical filtration time at 2.0/1.6 mmol-Fe2+/S2O82-/g-VS decreased by 88.0% and 79.6%, respectively. Moreover, 89.8% of micro-pollutants (e.g., methylbenzene, ethylbenzene, p-m-xylene and o-xylene) in sludge were removed. Besides, the pretreatment was able to alter sludge drying behaviors and methane-producing potential. Pretreated sludge exhibited faster drying rate and shorter lag-time for methane production. Incineration residua of dewatered sludge could be re-coupled with S2O82- as the conditioner to enhance sludge dewaterability, thereby reducing the chemical input and disposal cost. This study provides a novel, self-sustainable strategy for sludge management, reutilization and final safe disposal.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Metano , Oxirredução , Água
8.
J Environ Manage ; 270: 110909, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721343

RESUMO

This review summarizes the recent development and studies of anaerobic membrane bioreactor (AnMBR) to control fouling issues. AnMBR is an emerging waste water treatment technology mainly because of its low sludge residual, high volumetric organic removal rate, complete liquid-solid separation, better effluent quality, efficient resource recovery and the small footprint. This paper surveys the fundamental aspects of AnMBRs, including its applications, membrane configurations, and recent progress for enhanced reactor performance. Furthermore, the membrane fouling, a major restriction in the practical application of AnMBR, its mechanism and antifouling strategies like membrane cleaning, quorum quenching, ultrasonic treatment, membrane modifications, and antifouling agents are briefly discussed. Based on the review, the key issues that require urgent attention to facilitate large scale and integrated application of AnMBR technology are identified and future research perspectives relating to the prevalent issues are proposed.


Assuntos
Reatores Biológicos , Purificação da Água , Anaerobiose , Membranas Artificiais , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
9.
J Environ Manage ; 232: 505-513, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30502618

RESUMO

The indiscriminate use of pesticides due to modern agricultural practices has received special attention from the scientific community to address the persistence, recalcitrance and multi-faceted toxicity of several pesticides. Pesticides are hazardous/toxic and can accumulate easily into non-target organisms including humans and other life forms. Several studies have been performed to investigate the effect of biochar addition for pesticide remediation. This review provides a comprehensive information on biochar amendment for the remediation of persistent organic pollutants such as pesticides. The types of pesticides and their hazards to life forms are briefly introduced before detailing biochar production, its characteristics and applications. Biochar addition in pesticide polluted environment offers the following advantages: (a) increases the soil water holding capacity, (b) improves aeration conditions in soil, and (c) provides habitat for the growth of microorganisms, thereby facilitating microbial community for metabolic activities and pesticide degradation. This paper also provides an up-to-date review on remediation of pesticides using biochar, the knowledge gaps and the future research directions in this field to evaluate the effect of biochar addition on agricultural and environmental performances.


Assuntos
Recuperação e Remediação Ambiental , Praguicidas , Poluentes do Solo , Agricultura , Carvão Vegetal , Solo
10.
J Environ Manage ; 230: 293-300, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30292017

RESUMO

This study investigated the effect of light intensity on three various microalga consortia collected from natural ecological water bodies (named A, B and C) towards their fatty acid profiling and fractions, carbohydrate and protein production at different light intensities of 100, 200 and 300 µmol m-2 s-1. The results indicating that increasing light intensity positively correlated with the lipid production than carbohydrate and protein. Irrespective to the solids (Total and Volatile Solid) content, lipids and carbohydrate has varied significantly. Consortia C showed higher productivity toward lipids, whereas consortia A and B accumulated more carbohydrate and protein, respectively. The microscopic images revealed the breakdown of cells during the increase in light intensity, in spite, the similar algal species were observed in all consortia experimented. Principal component analysis (PCA) revealed that low light intensity aid relatively in high protein, Total Nitrogen and Total Phosphorus, meanwhile high intensity attributed carbohydrates and unsaturated fatty acids (USFA) contents.


Assuntos
Biomassa , Carboidratos/análise , Ácidos Graxos/análise , Carboidratos/biossíntese , Ecossistema , Ácidos Graxos/biossíntese , Lipídeos/biossíntese , Nitrogênio/análise , Fósforo/análise
11.
Crit Rev Biotechnol ; 38(6): 868-882, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29264932

RESUMO

This review provides the alternative routes towards the valorization of dark H2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.


Assuntos
Biocombustíveis , Hidrogênio/metabolismo , Fermentação
12.
J Environ Manage ; 218: 165-180, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29679823

RESUMO

The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed.


Assuntos
Resíduos Industriais , Eliminação de Resíduos Líquidos , Indústrias , Águas Residuárias , Poluentes Químicos da Água
13.
J Environ Manage ; 222: 378-384, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29870966

RESUMO

A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and used to investigate organic material and nutrient removal rate constants for wastewater treatment and establish a practical predictive model for use. For this purpose, the performance of multiple parameters was statistically evaluated during the process and predictive models were suggested. The measurement of the kinetic rate constant was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda, and Gold (LMG) analysis and Bayesian model averaging (BMA) method were employed for identifying the relative importance of variables and their optimal multiple regression (MR). The results showed that the first-order-PFR (M2) model did not fit the data (P > 0.05, and R2 < 0.5), whereas the first-order-CSTR (M1) model for the chemical oxygen demand (CODCr) and Monod-CSTR (M3) model for the CODCr and ammonium nitrogen (NH4-N) showed a high correlation with the experimental data (R2 > 0.5). The pollutant removal rates in the case of M1 were 0.19 m/d (CODCr) and those for M3 were 25.2 g/m2∙d for CODCr and 2.63 g/m2∙d for NH4-N. By applying a multi-variable linear regression method, the optimal empirical models were established for predicting the final effluent concentration of five days' biochemical oxygen demand (BOD5) and NH4-N. In general, the hydraulic loading rate was considered an important variable having a high value of relative importance, which appeared in all the optimal predictive models.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Áreas Alagadas , Teorema de Bayes , Análise da Demanda Biológica de Oxigênio , Cinética , Nitrogênio
14.
J Environ Manage ; 157: 220-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25910976

RESUMO

Food waste (FW) related issues in developing countries is currently considered to be a major threatening factor for sustainable development and FW management systems. Due to incomplete FW management systems, many developing countries are facing challenges, such as environmental and sanitary problems that are caused by FW. The difference in FW generation trends between developing countries and developed countries was reviewed in this work, which demonstrated that the effects of income level, population growth, and public participation in FW management are very important. Thus, this work aimed to provide an overview of recycling activities, related regulations, and current FW treatment technology in developing countries by following some case studies. Taiwan, has been suggested as being a successful case in terms of FW management, and is therefore a typical model for developing countries to follow. Finally, an integrative management system as a suitable model for FW management has been suggested for developing countries.


Assuntos
Alimentos , Gerenciamento de Resíduos/métodos , Países em Desenvolvimento , Meio Ambiente , Previsões , Saúde Global , Humanos , Reciclagem
15.
Water Sci Technol ; 71(1): 105-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25607676

RESUMO

The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor.


Assuntos
Biocombustíveis/análise , Hidrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/metabolismo , Reatores Biológicos , Resíduos Industriais/análise
16.
ScientificWorldJournal ; 2014: 946503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672398

RESUMO

We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L ∗ d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55 °C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L ∗ d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30 °C, and pH 7.0. PCR-DGGE analysis revealed that combination of cellulolytic and fermentative bacteria were present in the hydrogen producing ASBR.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Fermentação , Hidrogênio/metabolismo , Jatropha/metabolismo , Jatropha/microbiologia , Eliminação de Resíduos , Anaerobiose , Animais , Biocombustíveis , Metabolômica , Metagenoma , Microbiota , Dados de Sequência Molecular
17.
Sci Total Environ ; 914: 169926, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199349

RESUMO

Microplastics (MPs) pollution has emerged as a critical environmental issue with far-reaching consequences for ecosystems and human health. These are plastic particles measuring <5 mm and are categorized as primary and secondary based on their origin. Primary MPs are used in various products like cosmetics, scrubs, body wash, and toothpaste, while secondary MPs are generated through the degradation of plastic products. These have been detected in seas, rivers, snow, indoor air, and seafood, posing potential risks to human health through the food chain. Detecting and quantifying MPs are essential to understand their distribution and abundance in the environment. Various microscopic (fluorescence microscopy, scanning electron microscopy) and spectroscopy techniques (FTIR, Raman spectroscopy, X-ray photoelectron spectroscopy) have been reported to analyse MPs. Despite the challenges in scalable removal methods, biological systems have emerged as promising options for eco-friendly MPs remediation. Algae, bacteria, and fungi have shown the potential to adsorb and degrade MPs in wastewater treatment plants (WWTPs) offering hope for mitigating this global crisis. This review examines the sources, impacts, detection, and biological removal of MPs, highlighting future directions in this crucial field of environmental conservation. By fostering global collaboration and innovative research a path towards a cleaner and healthier planet for future generations can be promised.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Águas Residuárias , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental
18.
Int J Biol Macromol ; 269(Pt 1): 131888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704963

RESUMO

Efficient conversion of sugars into fermentable sugars is a critical challenge in the cost-effective production of lignocellulosic biopolymers and biofuels. This study focuses on various sugar quantification techniques applied to Furcraea Foetida (Mauritius Hemp) samples, utilizing natural deep eutectic solvents (NADES) and deep eutectic solvents (DES) like urea, glycerol, citrates, pyrogallol (PY), and cetyltrimethylammonium bromide (CTAB). Employing a Taguchi-designed experiment, operational conditions were fine-tuned to evaluate the influence of time, concentration, and temperature on each deep eutectic solvent-based process. The emerging green solvent extraction approach demonstrated significant results, achieving notably high sugar yields compared to traditional techniques such as alkali, hot-water, and acid-mediated extraction. At a CTAB:PY molar ratio of 1:3, optimized for 60 min at 50 °C, the highest fermentable sugar (FS) yield of 0.6891 ± 0.0123 g FS/g LCB was attained-2 to 6 times higher than non-optimized values and 0.2 to 0.3 times higher than optimized traditional methods. In light of this, this research study emphasizes the pivotal significance of efficient sugar conversion through optimized deep eutectic solvent-based extraction methods, with a particular focus on Furcraea Foetida fibers, offering promising outcomes for the biofuel and biopolymer production industry.


Assuntos
Solventes Eutéticos Profundos , Fermentação , Lignina , Lignina/química , Solventes Eutéticos Profundos/química , Açúcares/química , Solventes/química , Temperatura
19.
Environ Pollut ; 341: 122842, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37940020

RESUMO

Emerging contaminants are chemicals generated due to the usage of pesticide, endocrine disrupting compounds, pharmaceuticals, and personal care products and are liberated into the environment in trace quantities. The emerging contaminants eventually become a greater menace to living beings owing to their wide range and inhibitory action. To diminish these emerging contaminants from the environment, an Advanced Oxidation Process was considered as an efficient option. The Advanced Oxidation Process is an efficient method for mineralizing fractional or generous contaminants due to the generation of reactive species. The primary aim of this review paper is to provide a thorough knowledge on different Advanced Oxidation Process methods and to assess their mineralization efficacy of emerging contaminants. This study indicates the need for an integrated process for enhancing the treatment efficiency and overcoming the drawbacks of the individual Advanced Oxidation Process. Further, its application concerning technical and economic aspects is reviewed. Until now, most of the studies have been based on lab or pilot scale and do not represent the actual scenario of the emerging contaminant mineralization. Thus, the scaling up of the process was discussed, and the major challenges in large scale implementation were pointed out.


Assuntos
Disruptores Endócrinos , Praguicidas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Oxirredução , Praguicidas/análise
20.
Biotechnol Biofuels Bioprod ; 17(1): 72, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811976

RESUMO

Succinic acid (SA) is one of the top platform chemicals with huge applications in diverse sectors. The presence of two carboxylic acid groups on the terminal carbon atoms makes SA a highly functional molecule that can be derivatized into a wide range of products. The biological route for SA production is a cleaner, greener, and promising technological option with huge potential to sequester the potent greenhouse gas, carbon dioxide. The recycling of renewable carbon of biomass (an indirect form of CO2), along with fixing CO2 in the form of SA, offers a carbon-negative SA manufacturing route to reduce atmospheric CO2 load. These attractive attributes compel a paradigm shift from fossil-based to microbial SA manufacturing, as evidenced by several commercial-scale bio-SA production in the last decade. The current review article scrutinizes the existing knowledge and covers SA production by the most efficient SA producers, including several bacteria and yeast strains. The review starts with the biochemistry of the major pathways accumulating SA as an end product. It discusses the SA production from a variety of pure and crude renewable sources by native as well as engineered strains with details of pathway/metabolic, evolutionary, and process engineering approaches for enhancing TYP (titer, yield, and productivity) metrics. The review is then extended to recent progress on separation technologies to recover SA from fermentation broth. Thereafter, SA derivatization opportunities via chemo-catalysis are discussed for various high-value products, which are only a few steps away. The last two sections are devoted to the current scenario of industrial production of bio-SA and associated challenges, along with the author's perspective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA