Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 147(3): 565-76, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22036565

RESUMO

Transforming growth factor beta (TGF-ß) signaling, mediated through the transcription factors Smad2 and Smad3 (Smad2/3), directs different responses in different cell types. Here we report that Smad3 co-occupies the genome with cell-type-specific master transcription factors. Thus, Smad3 occupies the genome with Oct4 in embryonic stem cells (ESCs), Myod1 in myotubes, and PU.1 in pro-B cells. We find that these master transcription factors are required for Smad3 occupancy and that TGF-ß signaling largely affects the genes bound by the master transcription factors. Furthermore, we show that induction of Myod1 in nonmuscle cells is sufficient to redirect Smad3 to Myod1 sites. We conclude that cell-type-specific master transcription factors determine the genes bound by Smad2/3 and are thus responsible for orchestrating the cell-type-specific effects of TGF-ß signaling.


Assuntos
Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Elementos Facilitadores Genéticos , Humanos , Camundongos , Proteína MyoD/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteína Smad3/metabolismo
2.
Nature ; 516(7529): 56-61, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25471879

RESUMO

Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates; however, the regulatory circuits specifying these states and enabling transitions between them are not well understood. Here we set out to characterize transcriptional heterogeneity in mouse PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signalling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signalling pathways and chromatin regulators. Notably, either removal of mature microRNAs or pharmacological blockage of signalling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal and a distinct chromatin state, an effect mediated by opposing microRNA families acting on the Myc/Lin28/let-7 axis. These data provide insight into the nature of transcriptional heterogeneity in PSCs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes/fisiologia , Animais , Morte Celular , Divisão Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/metabolismo , Células-Tronco Pluripotentes/citologia , Transdução de Sinais
3.
Mol Cell ; 47(2): 151-3, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22840998

RESUMO

In this issue of Molecular Cell, Weinberger et al. (2012) find that particular histone deacetylases (HDACs) regulate distinct stages of transcription, implicating chromatin dynamics in the generation of gene-specific noise within populations of genetically identical cells.

4.
Mol Cell ; 45(2): 143-4, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22284673

RESUMO

Cells can make fate decisions in response to information from the environment. In this issue of Molecular Cell, Chen et al. (2012) describe how the design of a signal-processing pathway allows a homogenous population of cells to display diverse responses to uniform growth factor cues.

5.
Mol Cell ; 36(1): 61-74, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19818710

RESUMO

Polycomb group (PcG) proteins exert essential functions in the most disparate biological processes. The contribution of PcG proteins to cell commitment and differentiation relates to their ability to repress transcription of developmental regulators in embryonic stem (ES) cells and in committed cell lineages, including skeletal muscle cells (SMC). PcG proteins are preferentially removed from transcribed regions, but the underlying mechanisms remain unclear. Here, PcG proteins are found to occupy and repress transcription from an intronic region containing the microRNA miR-214 in undifferentiated SMC. Differentiation coincides with PcG disengagement, recruitment of the developmental regulators MyoD and myogenin, and activation of miR-214 transcription. Once transcribed, miR-214 negatively feeds back on PcG by targeting the Ezh2 3'UTR, the catalytic subunit of the PRC2 complex. miR-214-mediated Ezh2 protein reduction accelerates SMC differentiation and promotes unscheduled transcription of developmental regulators in ES cells. Thus, miR-214 and Ezh2 establish a regulatory loop controlling PcG-dependent gene expression during differentiation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , MicroRNAs/fisiologia , Músculo Esquelético/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/genética , Retroalimentação Fisiológica/fisiologia , Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Músculo Esquelético/crescimento & desenvolvimento , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Complexo Repressor Polycomb 2 , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
6.
Lung India ; 34(3): 256-261, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28474652

RESUMO

CONTEXT: Asthma is a chronic inflammatory disorder of the airway with involvement of various cellular populations and release of many inflammatory mediators. Eosinophils and serum immunoglobulin E (IgE) are considered a good marker of airway inflammation in asthma. The correlation of clinical assessment with various markers of airway inflammation in asthma is not well established in the Indian population. AIMS: This study aims to study the correlation of serum IgE, sputum eosinophil count, and peripheral eosinophil count with clinical severity of Asthma. METHODS: This is a cross-sectional study involving 76 stable asthmatic patients of 18-60 years of age attending the pulmonary medicine OPD. Spirometry measured at baseline. Participants were categorized according to the GINA criteria based on clinical symptoms and pulmonary function test. Blood samples were collected for peripheral eosinophil count, serum IgE levels, and sputum samples for eosinophil count. All three parameters were compared with severity of asthma. The correlation of sputum eosinophil count, peripheral eosinophil count, and serum IgE with severity of asthma was analyzed by Pearson's Chi-square test, Fisher's exact test, and the correlation coefficient was reported together with standard error of the estimate. RESULTS: The mean age of patients in our study was 37.42 years and 56.6% were male. There was a significant inverse correlation between serum IgE levels and predicted forced expiratory volume 1 s (FEV1). Sputum eosinophilia was significantly seen in severe persistent asthma patients (19.7%). There was a significant inverse correlation between sputum eosinophil count and predicted FEV1and forced vital capacity. We also found there was a significant association between peripheral eosinophil count, sputum eosinophil count, and elevated serum IgE (g100 IU/mL) with severe persistent asthma. CONCLUSIONS: The assessment of sputum eosinophil count is simple, inexpensive, noninvasive, and direct measurement of airway inflammation. It could be the preferred method in monitoring airway inflammation and guided management in day-to-day practice.

7.
PLoS One ; 9(7): e102873, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057990

RESUMO

Fully-connected triads (FCTs), such as the Oct4-Sox2-Nanog triad, have been implicated as recurring transcriptional motifs embedded within the regulatory networks that specify and maintain cellular states. To explore the possible connections between FCT topologies and cell fate determinations, we employed computational network screening to search all possible FCT topologies for multistability, a dynamic property that allows the rise of alternate regulatory states from the same transcriptional network. The search yielded a hierarchy of FCTs with various potentials for multistability, including several topologies capable of reaching eight distinct stable states. Our analyses suggested that complete auto-activation is an effective indicator for multistability, and, when gene expression noise was incorporated into the model, the networks were able to transit multiple states spontaneously. Different levels of stochasticity were found to either induce or disrupt random state transitioning with some transitions requiring layovers at one or more intermediate states. Using this framework we simulated a simplified model of induced pluripotency by including constitutive overexpression terms. The corresponding FCT showed random state transitioning from a terminal state to the pluripotent state, with the temporal distribution of this transition matching published experimental data. This work establishes a potential theoretical framework for understanding cell fate determinations by connecting conserved regulatory modules with network dynamics. Our results could also be employed experimentally, using established developmental transcription factors as seeds, to locate cell lineage specification networks by using auto-activation as a cipher.


Assuntos
Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Estatísticos , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Processos Estocásticos , Transcrição Gênica
8.
Dev Cell ; 21(3): 575-88, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21852201

RESUMO

Control of gene expression during development requires the concerted action of sequence-specific transcriptional regulators and epigenetic modifiers, which are spatially coordinated within the nucleus through mechanisms that are poorly understood. Here we show that transcriptional repression by the Msx1 homeoprotein in myoblast cells requires the recruitment of Polycomb to target genes located at the nuclear periphery. Target genes repressed by Msx1 display an Msx1-dependent enrichment of Polycomb-directed trimethylation of lysine 27 on histone H3 (H3K27me3). Association of Msx1 with the Polycomb complex is required for repression and regulation of myoblast differentiation. Furthermore, Msx1 promotes a dynamic spatial redistribution of the H3K27me3 repressive mark to the nuclear periphery in myoblast cells and the developing limb in vivo. Our findings illustrate a hitherto unappreciated spatial coordination of transcription factors with the Polycomb complex for appropriate regulation of gene expression programs during development.

9.
PLoS One ; 6(8): e22416, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886766

RESUMO

A surprising portion of both mammalian and Drosophila genomes are transcriptionally paused, undergoing initiation without elongation. We tested the hypothesis that transcriptional pausing is an obligate transition state between definitive activation and silencing as human embryonic stem cells (hESCs) change state from pluripotency to mesoderm. Chromatin immunoprecipitation for trimethyl lysine 4 on histone H3 (ChIP-Chip) was used to analyze transcriptional initiation, and 3' transcript arrays were used to determine transcript elongation. Pluripotent and mesodermal cells had equivalent fractions of the genome in active and paused transcriptional states (∼48% each), with ∼4% definitively silenced (neither initiation nor elongation). Differentiation to mesoderm changed the transcriptional state of 12% of the genome, with roughly equal numbers of genes moving toward activation or silencing. Interestingly, almost all loci (98-99%) changing transcriptional state do so either by entering or exiting the paused state. A majority of these transitions involve either loss of initiation, as genes specifying alternate lineages are archived, or gain of initiation, in anticipation of future full-length expression. The addition of chromatin dynamics permitted much earlier predictions of final cell fate compared to sole use of conventional transcript arrays. These findings indicate that the paused state may be the major transition state for genes changing expression during differentiation, and implicate control of transcriptional elongation as a key checkpoint in lineage specification.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Inativação Gênica , Transcrição Gênica , Ativação Transcricional/genética , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos/genética , Genoma Humano/genética , Humanos , Camundongos , Modelos Genéticos , Fases de Leitura Aberta/genética
10.
Proc Natl Acad Sci U S A ; 103(23): 8721-6, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16731620

RESUMO

Since their discovery as key regulators of early animal development, microRNAs now are recognized as widespread regulators of gene expression. Despite their abundance, little is known regarding the regulation of microRNA biogenesis. We show that three highly conserved muscle-specific microRNAs, miR-1, miR-133 and miR-206, are robustly induced during the myoblast-myotube transition, both in primary human myoblasts and in the mouse mesenchymal C2C12 stem cell line. These microRNAs were not induced during osteogenic conversion of C2C12 cells. Moreover, both loci encoding miR-1, miR-1-1, and miR-1-2, and two of the three encoding miR-133, miR-133a-1 and miR-133a-2, are strongly induced during myogenesis. Some of the induced microRNAs are in intergenic regions, whereas two are transcribed in the opposite direction to the nonmuscle-specific gene in which they are embedded. By using CHIP analysis, we demonstrate that the myogenic factors Myogenin and MyoD bind to regions upstream of these microRNAs and, therefore, are likely to regulate their expression. Because miR-1 and miR-206 are predicted to repress similar mRNA targets, our work suggests that induction of these microRNAs is important in regulating the expression of muscle-specific proteins.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Músculos/metabolismo , Animais , Células Cultivadas , Cromossomos de Mamíferos/genética , Éxons/genética , Genoma/genética , Humanos , Camundongos , MicroRNAs/metabolismo , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Miogenina/metabolismo , Especificidade de Órgãos , Ligação Proteica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA