RESUMO
This report outlines the synthesis of an ionic liquid-based pH-responsive indicator to sense acids or bases in non-polar as well as polar solvents. Herein, we have assembled a new ionic liquid (IL) comprised of a group of uniform materials based on organic salts (GUMBOS) by attaching a quaternary phosphonium ionic liquid with a very common acid-base indicator, methyl orange, via simple ion-exchange reaction. This integrated IL-based indicator is highly soluble in less polar solvents and exhibits good sensitivity toward the presence of acids/bases in those media. Furthermore, this indicator has been exploited in determining the dissociation constants of several acids in non-aqueous aprotic solvents by overlapping indicator method and hence this report provides essential information toward the understanding of many fundamental chemical reactions. This report has further scope for the synthesis of novel aqueous suspended nanomaterials, i.e., the nanoparticles derived from GUMBOS (nanoGUMBOS) by a simple flash nano-precipitation method. The nanomaterial has been well characterized by different spectroscopic and microscopic studies. The obtained nanoparticles also exhibit substantial pH-responsive behaviors in aqueous medium and show better susceptibility as compared to the free organic indicator. Thus, this report explores detailed studies on the IL-based indicator in sensing the acidity/basicity of various media.
RESUMO
This report explores the reversible acidochromism of a benzoxazole-based scaffold (BPP), which is highly sensitive to the acid-base in the liquid and gas phases. With the addition of acid, the solution of BPP changes its color from yellow to pink fuchsia due to the transformation of its imine into quinonoid form. Colour change is completely reversible in the presence of the base, confirming the reversible acidochromic behavior of the present BPP system. Further, a paper strips-based test kit has been demonstrated for the practical utility of the present acidochromic BPP to identify a trace amount of acid-base in solution and gas-phase, respectively. The mechanistic aspect of detection of acid-base and colorimetric change in the presence of acid-base have been explored by density functional theoretical investigations and 1H NMR experiments. Moreover, we have constructed a reconfigurable dual-output combinatorial logic circuit by utilizing the spectral shift between two wavelengths at 404 nm and 552 nm, respectively, and colorimetric change of the BPP in the presence and absence of acid-base.