Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(29): 8244-8, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27238424

RESUMO

Advanced tools for cell imaging are of great interest for the detection, localization, and quantification of molecular biomarkers of cancer or infection. We describe a novel photopolymerization method to coat quantum dots (QDs) with polymer shells, in particular, molecularly imprinted polymers (MIPs), by using the visible light emitted from QDs excited by UV light. Fluorescent core-shell particles specifically recognizing glucuronic acid (GlcA) or N-acetylneuraminic acid (NANA) were prepared. Simultaneous multiplexed labeling of human keratinocytes with green QDs conjugated with MIP-GlcA and red QDs conjugated with MIP-NANA was demonstrated by fluorescence imaging. The specificity of binding was verified with a non-imprinted control polymer and by enzymatic cleavage of the terminal GlcA and NANA moieties. The coating strategy is potentially a generic method for the functionalization of QDs to address a much wider range of biocompatibility and biorecognition issues.


Assuntos
Queratinócitos/citologia , Impressão Molecular , Imagem Óptica , Polímeros/química , Pontos Quânticos/química , Humanos
2.
Methods Mol Biol ; 1575: 399-415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255896

RESUMO

Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.


Assuntos
Ácido Glucurônico/análise , Impressão Molecular/métodos , Ácido N-Acetilneuramínico/análise , Pele/metabolismo , Linhagem Celular , Humanos , Ácido Hialurônico , Microscopia Confocal , Nanopartículas , Tamanho da Partícula , Pele/química , Espectrometria de Fluorescência , Fixação de Tecidos
3.
Biosens Bioelectron ; 88: 85-93, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27481167

RESUMO

Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression.


Assuntos
Corantes Fluorescentes/química , Ácido Hialurônico/análise , Impressão Molecular , Ácido N-Acetilneuramínico/análise , Imagem Óptica/métodos , Polímeros/química , Pontos Quânticos/química , Técnicas Biossensoriais/métodos , Linhagem Celular , Humanos , Microscopia de Fluorescência/métodos , Impressão Molecular/métodos , Rodaminas/química
4.
Adv Healthc Mater ; 4(9): 1322-6, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-25880918

RESUMO

Molecularly imprinted polymers can be used as "plastic antibodies" for cell and tissue imaging, as demonstrated using hyaluronan on cell surfaces as a model target. Fluorescent nanoparticles binding a hyaluronan substructure, glucuronic acid, are used to image fixated and living cells and tissues. Plastic antibodies can be tailored to specific targets and easily labeled, and are physically and chemically stable.


Assuntos
Anticorpos/química , Plásticos Biodegradáveis/química , Materiais Biomiméticos/química , Queratinócitos/metabolismo , Nanopartículas/química , Pele/metabolismo , Células Cultivadas , Corantes Fluorescentes/química , Humanos , Queratinócitos/citologia , Microscopia de Fluorescência/métodos , Pele/citologia
5.
Talanta ; 105: 211-8, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23598010

RESUMO

We present a multi-objective optimization of the binding properties of a molecularly imprinted polymer (MIP) which specifically binds glucuronic acid (GA). A design of experiments approach is used to improve four different parameters that describe the binding properties of the polymer. Eleven different methacrylamide-co-ethyleneglycol dimethacrylate polymers imprinted with GA were synthesized according to a full factorial experimental design plan with 3 influencing factors (degree of cross-linking, molar equivalent of monomer to template and initiator concentration). These polymers were characterized by adsorption of the radiolabeled target analyte in methanol:water 9:1. The binding parameters were computed to optimize the polymer composition, taking into account four objective variables: the maximum binding capacity at high (Bmax) and low (B2) analyte concentrations, the equilibrium constant K50, and the imprinting factor (IF, binding to MIP/binding to NIP). With the multi-objective optimization method based on a desirability approach the composition of a twelfth "ideal" polymer could be predicted. This predicted polymer with highest "desirability" was synthesized with a composition of 0.65 mol% of initiator and a 1:4:20 ratio of template:functional monomers:cross-linker (T:M:X) (80% of cross-linking), and found to be the overall best MIP. Improvements over the original starting polymer were a 6 times lower K50, which corresponds to higher affinity, 20% higher capacity at low analyte concentration (B2), 40% higher capacity (Bmax) and 1.3 times increased imprinting factor (IF). Binding assays were also performed in aqueous solvents. Good binding properties were obtained in pure water with an imprinting factor of 3.2. Thus, this polymer is potentially applicable to biological samples like urine where glucuronides occur.


Assuntos
Ácido Glucurônico/química , Impressão Molecular , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA