Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 20(14): e2307684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38126906

RESUMO

Uranium is a high-value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long-term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS2 nanotubes. Followingly, the product is reduced at elevated temperatures in a hydrogen atmosphere. Nanocrystalline UO2 nanoparticles anchor within the WS2 nanotube lumen are obtained through this procedure. Such methodology can find utilization in the processing of spent nuclear fuel or other highly active radionuclides as well as a fuel for deep space missions. Moreover, the low melting temperatures of different heavy metal-nitrate hydrates, pave the way for their encapsulation within the hollow core of the WS2 nanotubes, as demonstrated herein.

2.
Nano Lett ; 23(22): 10259-10266, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37805929

RESUMO

WS2 nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS2 nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000-5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W5O14 nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W18O49 nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS2 nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 µm long WS2 nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.

3.
ACS Nano ; 18(19): 12284-12294, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698720

RESUMO

Multiwall WS2 nanotubes have been synthesized from W18O49 nanowhiskers in substantial amounts for more than a decade. The established growth model is based on the "surface-inward" mechanism, whereby the high-temperature reaction with H2S starts on the nanowhisker surface, and the oxide-to-sulfide conversion progresses inward until hollow-core multiwall WS2 nanotubes are obtained. In the present work, an upgraded in situ SEM µReactor with H2 and H2S sources has been conceived to study the growth mechanism in detail. A hitherto undescribed growth mechanism, named "receding oxide core", which complements the "surface-inward" model, is observed and kinetically evaluated. Initially, the nanowhisker is passivated by several WS2 layers via the surface-inward reaction. At this point, the diffusion of H2S through the already existing outer layers becomes exceedingly sluggish, and the surface-inward reaction is slowed down appreciably. Subsequently, the tungsten suboxide core is anisotropically volatilized within the core close to its tips. The oxide vapors within the core lead to its partial out-diffusion, partially forming a cavity that expands with reaction time. Additionally, the oxide vapors react with the internalized H2S gas, forming fresh WS2 layers in the cavity of the nascent nanotube. The rate of the receding oxide core mode increases with temperatures above 900 °C. The growth of nanotubes in the atmospheric pressure flow reactor is carried out as well, showing that the proposed growth model (receding oxide core) is also relevant under regular reaction parameters. The current study comprehensively explains the WS2 nanotube growth mechanism, combining the known model with contemporary insight.

4.
Cryst Growth Des ; 24(1): 378-390, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38188265

RESUMO

Tungsten suboxide W18O49 nanowhiskers are a material of great interest due to their potential high-end applications in electronics, near-infrared light shielding, catalysis, and gas sensing. The present study introduces three main approaches for the fundamental understanding of W18O49 nanowhisker growth and structure. First, W18O49 nanowhiskers were grown from γ-WO3/a-SiO2 nanofibers in situ in a scanning electron microscope (SEM) utilizing a specially designed microreactor (µReactor). It was found that irradiation by the electron beam slows the growth kinetics of the W18O49 nanowhisker, markedly. Following this, an in situ TEM study led to some new fundamental understanding of the growth mode of the crystal shear planes in the W18O49 nanowhisker and the formation of a domain (bundle) structure. High-resolution scanning transmission electron microscopy analysis of a cross-sectioned W18O49 nanowhisker revealed the well-documented pentagonal Magnéli columns and hexagonal channel characteristics for this phase. Furthermore, a highly crystalline and oriented domain structure and previously unreported mixed structural arrangement of tungsten oxide polyhedrons were analyzed. The tungsten oxide phases found in the cross section of the W18O49 nanowhisker were analyzed by nanodiffraction and electron energy loss spectroscopy (EELS), which were discussed and compared in light of theoretical calculations based on the density functional theory method. Finally, the knowledge gained from the in situ SEM and TEM experiments was valorized in developing a multigram synthesis of W18O49/a-SiO2 urchin-like nanofibers in a flow reactor.

5.
Materials (Basel) ; 13(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877992

RESUMO

In this study, we described the development of a simplified wet spinning method of the production of a novel type of porous continuous fiber based on poly-3-(R)-hydroxybutyrate (PHB). The principle of this method is precipitation of PHB dissolved in chloroform solution into the ethanol precipitation bath. The influence of various PHB concentrations and feed rates on specific surface area (measured by nitrogen absorption method) was studied. Materials were also characterized by SEM. Surface areas of fibers achieved by wet spinning were in the range of tens of m2.g-1, and the biggest surface area value was 55 m2.g-1. The average diameter of fibers was in the range of 20-120 µm and was dependent on both PHB concentration and feed rate. Optimum conditions for reaching stable fibers of high surface area were 3-5 % w.t. of PHB and feed rate 0.5-3 ml.h-1. Fibers were functionalized by adsorption of some natural plant extracts. The incorporation of active substances into fibers was confirmed by infrared spectroscopy. High antioxidant and antimicrobial effect of PHB-fibers with cloves extract was found, as well as excellent long-term stability and optimal dynamics of the release of active compounds. The newly produced material would be applicable in pharmacy, cosmetics, and wound healing.

6.
Materials (Basel) ; 12(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207921

RESUMO

Microbial poly(3-hydroxybutyrate) (PHB) has several advantages including its biocompatibility and ability to degrade in vivo and in vitro without toxic substances. This paper investigates the feasibility of electrospun PHB meshes serving as drug delivery systems. The morphology of the electrospun samples was modified by varying the concentration of PHB in solution and the solvent composition. Scanning electron microscopy of the electrospun PHB scaffolds revealed the formation of different morphologies including porous, filamentous/beaded and fiber structures. Levofloxacin was used as the model drug for incorporation into PHB electrospun meshes. The entrapment efficiency was found to be dependent on the viscosity of the PHB solution used for electrospinning and ranged from 14.4-81.8%. The incorporation of levofloxacin in electrospun meshes was confirmed by Fourier-transform infrared spectroscopy and UV-VIS spectroscopy. The effect of the morphology of the electrospun meshes on the levofloxacin release profile was screened in vitro in phosphate-buffered saline solution. Depending upon the morphology, the electrospun meshes released about 14-20% of levofloxacin during the first 24 h. The percentage of drug released after 13 days increased up to 32.4% and was similar for all tested morphologies. The antimicrobial efficiency of all tested samples independent of the morphology, was confirmed by agar diffusion testing.

7.
Light Sci Appl ; 5(2): e16036, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30167146

RESUMO

We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing. CNTs have attracted significant research interest because they can be functionalized for a particular chemical, yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing. So far, however, utilizing their optical properties for this purpose has proven to be challenging. We demonstrate the use of localized surface plasmons generated on a nanostructured thin film, resembling a large array of nano-wires, to detect changes in the optical properties of the CNTs. Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature. The demonstrated methodology results additionally in a new, electrically passive, optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA