Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(43): E6659-E6668, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791035

RESUMO

Aberrant immune activation mediated by T effector cell populations is pivotal in the onset of autoimmunity in type 1 diabetes (T1D). T follicular helper (TFH) cells are essential in the induction of high-affinity antibodies, and their precursor memory compartment circulates in the blood. The role of TFH precursors in the onset of islet autoimmunity and signaling pathways regulating their differentiation is incompletely understood. Here, we provide direct evidence that during onset of islet autoimmunity, the insulin-specific target T-cell population is enriched with a C-X-C chemokine receptor type 5 (CXCR5)+CD4+ TFH precursor phenotype. During onset of islet autoimmunity, the frequency of TFH precursors was controlled by high expression of microRNA92a (miRNA92a). miRNA92a-mediated TFH precursor induction was regulated by phosphatase and tension homolog (PTEN) - phosphoinositol-3-kinase (PI3K) signaling involving PTEN and forkhead box protein O1 (Foxo1), supporting autoantibody generation and triggering the onset of islet autoimmunity. Moreover, we identify Krueppel-like factor 2 (KLF2) as a target of miRNA92a in regulating human TFH precursor induction. Importantly, a miRNA92a antagomir completely blocked induction of human TFH precursors in vitro. More importantly, in vivo application of a miRNA92a antagomir to nonobese diabetic (NOD) mice with ongoing islet autoimmunity resulted in a significant reduction of TFH precursors in peripheral blood and pancreatic lymph nodes. Moreover, miRNA92a antagomir application reduced immune infiltration and activation in pancreata of NOD mice as well as humanized NOD Scid IL2 receptor gamma chain knockout (NSG) human leucocyte antigen (HLA)-DQ8 transgenic animals. We therefore propose that miRNA92a and the PTEN-PI3K-KLF2 signaling network could function as targets for innovative precision medicines to reduce T1D islet autoimmunity.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Fatores de Transcrição Kruppel-Like/imunologia , MicroRNAs/imunologia , PTEN Fosfo-Hidrolase/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adolescente , Animais , Antagomirs/genética , Antagomirs/imunologia , Autoanticorpos/biossíntese , Criança , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/imunologia , Regulação da Expressão Gênica , Humanos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Cultura Primária de Células , Receptores CXCR5/genética , Receptores CXCR5/imunologia , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/patologia
2.
J Aerosol Med Pulm Drug Deliv ; 36(3): 144-151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310368

RESUMO

Nanopharmaceuticals represent a group of nanoparticles engineered for medical purposes. Nowadays, nanotechnology offers several possibilities to improve the safety and efficacy of medicines by designing advanced carrier systems which have been found to offer particular advantages when formulated in the nanoscale. Some of the initially marketed nano-formulations already demonstrate advantages over conventional formulations. Innovative delivery systems offer the possibility to not only control drug release but also to overcome biological barriers. For the translation of new drug products from bench to bedside, however, it is pivotal to test and prove their safety. This is of course also true for nanopharmaceuticals, where in particular the biocompatibility and also the clearance/biodegradation of the carrier material after drug delivery has to be demonstrated. The pulmonary route offers some great opportunities for noninvasive drug delivery but also implicates peculiar challenges. Advanced aerosol formulations with innovative drug carriers have already contributed to the significant progress of inhalation therapy. However, in spite of the large alveolar epithelial surface area, the respiratory tract still features diverse efficient biological barriers, primarily designed by nature to protect the human body against inhaled pollutants and pathogens. Only a thorough understanding of particle-lung interactions will allow the rational design of novel nanopharmaceuticals capable of overcoming these barriers, while of course always keeping in mind the strict demands for their safety. While the recent resurrection of inhaled insulin has already confirmed the potential of the pulmonary route for systemic delivery of biopharmaceuticals, inhaled nanopharmaceuticals, currently under investigation, promise to improve also local therapies like anti-infectives.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Administração por Inalação , Liberação Controlada de Fármacos , Excipientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA