Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(21): 217001, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856268

RESUMO

The density of quasiparticles typically observed in superconducting qubits exceeds the value expected in equilibrium by many orders of magnitude. Can this out-of-equilibrium quasiparticle density still possess an energy distribution in equilibrium with the phonon bath? Here, we answer this question affirmatively by measuring the thermal activation of charge-parity switching in a transmon qubit with a difference in superconducting gap on the two sides of the Josephson junction. We then demonstrate how the gap asymmetry of the device can be exploited to manipulate its parity.

2.
Phys Rev Lett ; 123(5): 056803, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491314

RESUMO

A quantum magnetic impurity of spin S at the edge of a two-dimensional time reversal invariant topological insulator may give rise to backscattering. We study here the shot noise associated with the backscattering current for arbitrary S. Our full analytical solution reveals that for S>1/2 the Fano factor may be arbitrarily large, reflecting bunching of large batches of electrons. By contrast, we rigorously prove that for S=1/2 the Fano factor is bounded between 1 and 2, generalizing earlier studies.

3.
Phys Rev Lett ; 123(2): 026804, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386525

RESUMO

Hydrodynamic charge transport is at the center of recent research efforts. Of particular interest is the nondissipative Hall viscosity, which conveys topological information in clean gapped systems. The prevalence of disorder in the real world calls for a study of its effect on viscosity. Here we address this question, both analytically and numerically, in the context of disordered noninteracting 2D electrons. Analytically, we employ the self-consistent Born approximation, explicitly taking into account the modification of the single-particle density of states and the elastic transport time due to the Landau quantization. The reported results interpolate smoothly between the limiting cases of a weak (strong) magnetic field and strong (weak) disorder. In the regime of a weak magnetic field our results describe the quantum (Shubnikov-de Haas type) oscillations of the dissipative and Hall viscosity. For strong magnetic fields we characterize the effects of the disorder-induced broadening of the Landau levels on the viscosity coefficients. This is supplemented by numerical calculations for a few filled Landau levels. Our results show that the Hall viscosity is surprisingly robust to disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA