Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 77, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589878

RESUMO

BACKGROUND: Ten percent of the female population suffers from congenital abnormalities of the vagina, uterus, or oviducts, with severe consequences for reproductive and psychological health. Yet, the underlying causes of most of these malformations remain largely unknown. ADGRA3 (GPR125) is involved in WNT signaling and planar cell polarity, mechanisms vital to female reproductive tract development. Although ADGRA3 is a well-established spermatogonial stem cell marker, its role within the female urogenital system remains unclear. RESULTS: In this study, we found Adgra3 to be expressed throughout the murine female urogenital system, with higher expression pre-puberty than after sexual maturation. We generated a global Adgra3-/- mouse line and observed imperforate vagina in 44% of Adgra3-/- females, resulting in distension of the reproductive tract and infertility. Ovarian morphology, plasma estradiol, ovarian Cyp19a1, and vaginal estrogen receptor α (Esr1) expression were unaffected. However, compared to controls, a significantly lower bone mineral density was found in Adgra3-/- mice. Whereas vaginal opening in mice is an estrogen-dependent process, 17ß-estradiol treatment failed to induce vaginal canalization in Adgra3-/- mice. Furthermore, a marked reduction in vaginal and ovarian progesterone receptor expression was observed concomitant with an upregulation of apoptotic regulators Bcl2, Bid, and Bmf in adult Adgra3-/- females with a closed vagina. CONCLUSIONS: Our collective results shed new insights into the complex mechanisms by which the adhesion receptor ADGRA3 regulates distal vaginal tissue remodeling during vaginal canalization via altered sex hormone responsiveness and balance in apoptotic regulators. This highlights the potential of ADGRA3 as a target in diagnostic screening and/or therapy for obstructive vaginal malformations in humans.


Assuntos
Estrogênios , Vagina , Humanos , Animais , Camundongos , Feminino , Incidência , Vagina/anormalidades , Estrogênios/metabolismo , Útero/metabolismo , Estradiol/farmacologia
2.
Proc Natl Acad Sci U S A ; 116(10): 4528-4537, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782821

RESUMO

Endometrioid endometrial carcinomas (EECs) carry multiple driver mutations even when they are low grade. However, the biological significance of these concurrent mutations is unknown. We explored the interactions among three signature EEC mutations: loss-of-function (LOF) mutations in PTEN, gain-of-function (GOF) mutations of phosphoinositide 3-kinase (PI3K), and CTNNB1 exon 3 mutations, utilizing in vivo mutagenesis of the mouse uterine epithelium. While epithelial cells with a monoallelic mutation in any one of three genes failed to propagate in the endometrium, any combination of two or more mutant alleles promoted the growth of epithelium, causing simple hyperplasia, in a dose-dependent manner. Notably, Ctnnb1 exon 3 deletion significantly increased the size of hyperplastic lesions by promoting the growth of PTEN LOF and/or PI3K GOF mutant cells through the activation of neoadenogenesis pathways. Although these three mutations were insufficient to cause EEC in intact female mice, castration triggered malignant transformation, leading to myometrial invasion and serosal metastasis. Treatment of castrated mice with progesterone or estradiol attenuated the neoplastic transformation. This study demonstrates that multiple driver mutations are required for premalignant cells to break the growth-repressing field effect of normal endometrium maintained by ovarian steroids and that CTNNB1 exon 3 mutations play critical roles in the growth of preneoplastic cells within the endometrium of premenopausal women and in the myometrial invasion of EECs in menopausal women.


Assuntos
Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/fisiopatologia , Ovário/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , beta Catenina/genética , Alelos , Transformação Celular Neoplásica , Progressão da Doença , Hiperplasia Endometrial/enzimologia , Hiperplasia Endometrial/metabolismo , Neoplasias do Endométrio/enzimologia , Feminino , Humanos , Mutação
3.
Carcinogenesis ; 41(11): 1605-1615, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32221533

RESUMO

Human papillomavirus (HPV) infection is necessary but insufficient for progression of epithelial cells from dysplasia to carcinoma-in situ (CIS) to invasive cancer. The combination of mutant cellular and viral oncogenes that regulate progression of cervical cancer (CC) remains unclear. Using combinations of HPV16 E6/E7 (E+), mutant Kras (mKras) (K+) and/or loss of Pten (P-/-), we generated autochthonous models of CC without exogenous estrogen, carcinogen or promoters. Furthermore, intravaginal instillation of adenoCre virus enabled focal activation of the oncogenes/inactivation of the tumor suppressor gene. In P+/+ mice, E6/E7 alone (P+/+E+K-) failed to cause premalignant changes, while mKras alone (P+/+E-K+) caused persistent mucosal abnormalities in about one-third of mice, but no cancers. To develop cancer, P+/+ mice needed both E6/E7 and mKras expression. Longitudinal endoscopies of P+/+E+K+ mice predicted carcinoma development by detection of mucosal lesions, found on an average of 23 weeks prior to death, unlike longitudinal quantitative PCRs of vaginal lavage samples from the same mice. Endoscopy revealed that individual mice differed widely in the time required for mucosal lesions to appear after adenoCre and in the time required for these lesions to progress to cancer. These cancers developed in the transition zone that extends, unlike in women, from the murine cervix to the distal vagina. The P-/-E+K+ genotype led to precipitous cancer development within a few weeks and E6/E7-independent cancer development occurred in the P-/-E-K+ genotype. In the P-/-E+K- genotype, mice only developed CIS. Thus, distinct combinations of viral and cellular oncogenes are involved in distinct steps in cervical carcinogenesis.


Assuntos
Carcinógenos/toxicidade , Endoscopia/métodos , Estrogênios/toxicidade , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias Vaginais/patologia , Animais , Carcinogênese , Feminino , Papillomavirus Humano 16/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , PTEN Fosfo-Hidrolase/fisiologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias Vaginais/diagnóstico por imagem , Neoplasias Vaginais/etiologia , Neoplasias Vaginais/metabolismo
4.
Differentiation ; 103: 46-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30236463

RESUMO

Development of the human female reproductive tract is reviewed from the ambisexual stage to advanced development of the uterine tube, uterine corpus, uterine cervix and vagina at 22 weeks. Historically this topic has been under-represented in the literature, and for the most part is based upon hematoxylin and eosin stained sections. Recent immunohistochemical studies for PAX2 (reactive with Müllerian epithelium) and FOXA1 (reactive with urogenital sinus epithelium and its known pelvic derivatives) shed light on an age-old debate on the derivation of vaginal epithelium supporting the idea that human vaginal epithelium derives solely from urogenital sinus epithelium. Aside for the vagina, most of the female reproductive tract is derived from the Müllerian ducts, which fuse in the midline to form the uterovaginal canal, the precursor of uterine corpus and uterine cervix an important player in vaginal development as well. Epithelial and mesenchymal differentiation markers are described during human female reproductive tract development (keratins, homeobox proteins (HOXA11 and ISL1), steroid receptors (estrogen receptor alpha and progesterone receptor), transcription factors and signaling molecules (TP63 and RUNX1), which are expressed in a temporally and spatially dynamic fashion. The utility of xenografts and epithelial-mesenchymal tissue recombination studies are reviewed.


Assuntos
Genitália Feminina/crescimento & desenvolvimento , Ductos Paramesonéfricos/crescimento & desenvolvimento , Útero/crescimento & desenvolvimento , Vagina/crescimento & desenvolvimento , Feminino , Genitália Feminina/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Proteínas com Homeodomínio LIM/genética , Receptores de Progesterona/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
5.
Differentiation ; 101: 39-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29684808

RESUMO

The role of tissue interactions was explored to determine whether epithelial differentiation within the developing human reproductive tract is induced and specified by mesenchyme in tissue recombinants composed of mouse vaginal mesenchyme + human uterine tubal epithelium (mVgM+hTubE). The tissue recombinants were grown in DES-treated ovariectomized athymic mice. After 2-4 weeks of in vivo growth, several vaginal specific features were expressed in the human tubal epithelium. The mesenchyme-induced effects included morphological change as well as expression of several immunohistochemical markers. Although the mesenchyme-induced shift in vaginal differentiation in the human tubal epithelium was not complete, the partial induction of vaginal markers in human tubal epithelium verifies the importance of mesenchymal-epithelial interactions in development of the human female reproductive tract. In a separate experiment, DES-induction of uterine epithelial progesterone receptor (PGR) and estrogen receptor 1 (ESR1) was explored in tissue recombinants composed of wild-type or Esr1KO mouse uterine mesenchyme + human fetal uterine epithelium (wt UtM+hUtE and Esr1KO UtM+hUtE). The rationale of this experiment was to determine whether DES-induction of PGR and ESR1 is mediated directly via epithelial ESR1 or indirectly (paracrine mechanism) via mesenchymal ESR1. DES-induction of uterine epithelial ESR1 and PGR in Esr1KO UtM+hUtE tissue recombinants (devoid of mesenchymal ESR1) formally eliminates the paracrine mechanism and demonstrates that DES induction of human uterine epithelial ESR1 and PGR is directly mediated via epithelial ESR1.


Assuntos
Diferenciação Celular/fisiologia , Epitélio/crescimento & desenvolvimento , Receptores de Progesterona/metabolismo , Útero/crescimento & desenvolvimento , Animais , Células Epiteliais/citologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Genitália Feminina , Humanos , Mesoderma/citologia , Camundongos , Útero/metabolismo
6.
Differentiation ; 97: 9-22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28918284

RESUMO

We present a detailed review of the embryonic and fetal development of the human female reproductive tract utilizing specimens from the 5th through the 22nd gestational week. Hematoxylin and eosin (H&E) as well as immunohistochemical stains were used to study the development of the human uterine tube, endometrium, myometrium, uterine cervix and vagina. Our study revisits and updates the classical reports of Koff (1933) and Bulmer (1957) and presents new data on development of human vaginal epithelium. Koff proposed that the upper 4/5ths of the vagina is derived from Müllerian epithelium and the lower 1/5th derived from urogenital sinus epithelium, while Bulmer proposed that vaginal epithelium derives solely from urogenital sinus epithelium. These conclusions were based entirely upon H&E stained sections. A central player in human vaginal epithelial development is the solid vaginal plate, which arises from the uterovaginal canal (fused Müllerian ducts) cranially and squamous epithelium of urogenital sinus caudally. Since Müllerian and urogenital sinus epithelium cannot be unequivocally identified in H&E stained sections, we used immunostaining for PAX2 (reactive with Müllerian epithelium) and FOXA1 (reactive with urogenital sinus epithelium). By this technique, the PAX2/FOXA1 boundary was located at the extreme caudal aspect of the vaginal plate at 12 weeks. During the ensuing weeks, the PAX2/FOXA1 boundary progressively extended cranially such that by 21 weeks the entire vaginal epithelium was FOXA1-reactive and PAX2-negative. This observation supports Bulmer's proposal that human vaginal epithelium derives solely from urogenital sinus epithelium. Clearly, the development of the human vagina is far more complex than previously envisioned and appears to be distinctly different in many respects from mouse vaginal development.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/genética , Ductos Paramesonéfricos/crescimento & desenvolvimento , Fator de Transcrição PAX2/genética , Vagina/crescimento & desenvolvimento , Animais , Desenvolvimento Embrionário/genética , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Ductos Paramesonéfricos/metabolismo , Reprodução/genética , Vagina/metabolismo
7.
Differentiation ; 98: 35-54, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29102757

RESUMO

Human female fetal reproductive tracts 9.5-22 weeks of gestation were grown for 1 month in ovariectomized athymic adult female mouse hosts that were either untreated or treated continuously with diethylstilbestrol (DES) via subcutaneous pellet. Normal morphogenesis and normal patterns of differentiation marker expression (KRT6, KRT7, KRT8, KRT10, KRT14, KRT19, ESR1, PGR, TP63, RUNX1, ISL1, HOXA11 and α-ACT2) were observed in xenografts grown in untreated hosts and mimicked observations of previously reported (Cunha et al., 2017) non-grafted specimens of comparable age. DES elicited several notable morphological affects: (a) induction of endometrial/cervical glands, (b) increased plication (folding) of tubal epithelium, (c) stratified squamous maturation of vaginal epithelium and (d) vaginal adenosis. DES also induced ESR1 in epithelia of the uterine corpus, cervix and globally induced PGR in most cells of the developing human female reproductive tract. Keratin expression (KRT6, KRT7, KRT8, KRT14 and KRT19) was minimally affected by DES. Simple columnar adenotic epithelium was devoid of TP63 and RUNX1, while DES-induced mature vaginal epithelium was positive for both transcription factors. Another striking effect of DES was observed in grafts of human uterine tube, in which DES perturbed smooth muscle patterning. These results define for the first time IHC protein markers of DES action on the developing human reproductive tract, which provide bio-endpoints of estrogen-induced teratogenesis in the developing human female reproductive tract for future testing of estrogenic endocrine disruptors.


Assuntos
Dietilestilbestrol/farmacologia , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Xenoenxertos/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Células Epiteliais/metabolismo , Congêneres do Estradiol/farmacologia , Feminino , Genitália Feminina , Xenoenxertos/fisiologia , Humanos , Fatores de Transcrição/metabolismo , Útero/citologia
8.
Differentiation ; 97: 54-72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29053991

RESUMO

Human female reproductive tract development rests mostly upon hematoxilyn and eosin stained sections despite recent advances on molecular mechanisms in mouse studies. We report application of immunohistochemical methods to explore the ontogeny of epithelial and mesenchymal differentiation markers (keratins, homobox proteins, steroid receptors), transcription factors and signaling molecules (TP63 and RUNX1) during human female reproductive tract development. Keratins 6, 7, 8, 10, 14 and 19 (KRT6, KRT7, KRT8, KRT10, KRT14, KRT19) were expressed in a temporally and spatially dynamic fashion. The undifferentiated Müllerian duct and uterovaginal canal, lined by simple columnar epithelia, expressed KRT7, KRT8 and KRT19. Glandular derivatives of the Müllerian duct (uterine tube, uterine corpus and endocervix) maintained expression of these keratins, while tissues that undergo stratified squamous differentiation (exocervix and vagina) expressed KRT6, KRT14 and KRT10 during development in an age-dependent fashion. TP63 and RUNX1 were expressed prior to KRT14, as these two transcription factors are known to be upstream from KRT14 in developing Müllerian epithelium. In the vagina, KRT10, a marker of terminal differentiation, appeared after endogenous estrogens transformed the epithelium to a thick glycogenated squamous epithelium. Uroplakin, a protein unique to urothelium, was expressed only in the bladder, urethra and vaginal introitus, but not in the female reproductive tract itself. Mesenchymal differentiation was examined through immunostaining for HOXA11 (expressed in uterine mesenchyme) and ISL1 (expressed in vaginal mesenchyme). A detailed ontogeny of estrogen receptor alpha (ESR1), progesterone receptor (PGR) and the androgen receptor (AR) provides the mechanistic underpinning for the teratogenicity of estrogens, progestins and androgens on female reproductive tract development. Immunohistochemical analysis of differentiation markers and signaling molecules advance our understanding of normal development of the human female reproductive tract. These observations demonstrate remarkable similarities in mouse and human female reproductive tract development, but also highlight some key differences.


Assuntos
Genitália Feminina/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Queratinas/genética , Receptores de Esteroides/genética , Reprodução/genética , Animais , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genitália Feminina/metabolismo , Humanos , Camundongos , Ductos Paramesonéfricos/crescimento & desenvolvimento , Ductos Paramesonéfricos/metabolismo , Receptores Androgênicos/genética , Receptores de Progesterona , Útero/crescimento & desenvolvimento , Útero/metabolismo , Vagina/crescimento & desenvolvimento , Vagina/metabolismo
9.
Hum Reprod ; 31(7): 1540-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130615

RESUMO

STUDY QUESTION: Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? SUMMARY ANSWER: HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. WHAT IS KNOWN ALREADY: Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. STUDY DESIGN, SIZE, DURATION: Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. MAIN RESULTS AND THE ROLE OF CHANCE: Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P < 0.05) reduction in tumor volume. The HF-induced volume reduction was accompanied by increased apoptosis and decreased cell proliferation. In contrast, there was no significant change in the collagen content either at the transcript or protein level between UL xenografts in control and HF groups. HF treatment did not change the expression level of ovarian steroid hormone receptors. No adverse pathological effects were observed in other tissues from mice undergoing treatment at these doses. LIMITATIONS, REASONS FOR CAUTION: While this study did test the effects of HF on human leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study showing the effectiveness of HF in reducing UL tumor growth by interfering with the main cellular processes regulating cell proliferation and apoptosis are in agreement with previous studies on the effects of HF on other fibrotic diseases. HF can be considered as a candidate for reducing the size of leiomyomas, particularly prior to surgery. STUDY FUNDING/COMPETING INTERESTS: This project was funded by NIH PO1HD057877 and R01 HD064402. Authors report no competing interests.


Assuntos
Antineoplásicos/uso terapêutico , Leiomioma/tratamento farmacológico , Piperidinas/uso terapêutico , Quinazolinonas/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Peso Corporal , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imuno-Histoquímica , Leiomioma/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas/efeitos adversos , Piperidinas/farmacologia , Quinazolinonas/efeitos adversos , Quinazolinonas/farmacologia , Neoplasias Uterinas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Proc Natl Acad Sci U S A ; 110(42): 17053-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082114

RESUMO

Uterine leiomyomas are extremely common estrogen and progesterone-dependent tumors of the myometrium and cause irregular uterine bleeding, severe anemia, and recurrent pregnancy loss in 15-30% of reproductive-age women. Each leiomyoma is thought to arise from a single mutated myometrial smooth muscle stem cell. Leiomyoma side-population (LMSP) cells comprising 1% of all tumor cells and displaying tumor-initiating stem cell characteristics are essential for estrogen- and progesterone-dependent in vivo growth of tumors, although they have remarkably lower estrogen/progesterone receptor levels than mature myometrial or leiomyoma cells. However, how estrogen/progesterone regulates the growth of LMSP cells via mature neighboring cells is unknown. Here, we demonstrate a critical paracrine role of the wingless-type (WNT)/ß-catenin pathway in estrogen/progesterone-dependent tumorigenesis, involving LMSP and differentiated myometrial or leiomyoma cells. Estrogen/progesterone treatment of mature myometrial cells induced expression of WNT11 and WNT16, which remained constitutively elevated in leiomyoma tissues. In LMSP cells cocultured with mature myometrial cells, estrogen-progesterone selectively induced nuclear translocation of ß-catenin and induced transcriptional activity of its heterodimeric partner T-cell factor and their target gene AXIN2, leading to the proliferation of LMSP cells. This effect could be blocked by a WNT antagonist. Ectopic expression of inhibitor of ß-catenin and T-cell factor 4 in LMSP cells, but not in mature leiomyoma cells, blocked the estrogen/progesterone-dependent growth of human tumors in vivo. We uncovered a paracrine role of the WNT/ß-catenin pathway that enables mature myometrial or leiomyoma cells to send mitogenic signals to neighboring tissue stem cells in response to estrogen and progesterone, leading to the growth of uterine leiomyomas.


Assuntos
Proliferação de Células , Estrogênios/metabolismo , Leiomioma/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Comunicação Parácrina , Progesterona/metabolismo , Neoplasias Uterinas/metabolismo , Proteínas Wnt/biossíntese , Via de Sinalização Wnt , beta Catenina/metabolismo , Adulto , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Estrogênios/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leiomioma/genética , Leiomioma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Gravidez , Progesterona/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Proteínas Wnt/genética , beta Catenina/genética
11.
Development ; 139(4): 772-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22274697

RESUMO

The transcription factor p63 is important in the development of the skin as p63-null mice exhibit striking defects in embryonic epidermal morphogenesis. Understanding the mechanisms that underlie this phenotype is complicated by the existence of multiple p63 isoforms, including TAp63 and ΔNp63. To investigate the role of ΔNp63 in epidermal morphogenesis we generated ΔNp63 knock-in mice in which the ΔNp63-specific exon is replaced by GFP. Homozygous ΔNp63(gfp/gfp) animals exhibit severe developmental anomalies including truncated forelimbs and the absence of hind limbs, largely phenocopying existing knockouts in which all p63 isoforms are deleted. ΔNp63-null animals show a poorly developed stratified epidermis comprising isolated clusters of disorganized epithelial cells. Despite the failure to develop a mature stratified epidermis, the patches of ΔNp63-null keratinocytes are able to stratify and undergo a program of terminal differentiation. However, we observe premature expression of markers associated with terminal differentiation, which is unique to ΔNp63-null animals and not evident in the skin of mice lacking all p63 isoforms. We posit that the dysregulated and accelerated keratinocyte differentiation phenotype is driven by significant alterations in the expression of key components of the Notch signaling pathway, some of which are direct transcriptional targets of ΔNp63 as demonstrated by ChIP experiments. The analysis of ΔNp63(gfp/gfp) knockout mice reaffirms the indispensable role of the ΔN isoform of p63 in epithelial biology and confirms that ΔNp63-null keratinocytes are capable of committing to an epidermal cell lineage, but are likely to suffer from diminished renewal capacity and an altered differentiation fate.


Assuntos
Diferenciação Celular/fisiologia , Epitélio/embriologia , Camundongos Knockout , Morfogênese/fisiologia , Fosfoproteínas/metabolismo , Isoformas de Proteínas/metabolismo , Transativadores/metabolismo , Animais , Biomarcadores/metabolismo , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Epiderme/anatomia & histologia , Epiderme/embriologia , Epiderme/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Epitélio/anatomia & histologia , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Humanos , Junções Intercelulares/metabolismo , Queratinócitos/citologia , Queratinócitos/fisiologia , Camundongos , Fosfoproteínas/genética , Isoformas de Proteínas/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Transativadores/genética
12.
Dev Biol ; 381(1): 5-16, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23830984

RESUMO

Women exposed to diethylstilbestrol (DES) in utero frequently develop vaginal adenosis, from which clear cell adenocarcinoma can arise. Despite decades of extensive investigation, the molecular pathogenesis of DES-associated vaginal adenosis remains elusive. Here we report that DES induces vaginal adenosis by inhibiting the BMP4/Activin A-regulated vaginal cell fate decision through a downregulation of RUNX1. BMP4 and Activin A produced by vaginal mesenchyme synergistically activated the expression of ΔNp63, thus deciding vaginal epithelial cell fate in the Müllerian duct epithelial cells (MDECs) via direct binding of SMADs on the highly conserved 5' sequence of ΔNp63. Therefore, mice in which Smad4 was deleted in MDECs failed to express ΔNp63 in vaginal epithelium and developed adenosis. This SMAD-dependent ΔNp63 activation required RUNX1, a binding partner of SMADs. Conditional deletion of Runx1 in the MDECs induced adenosis in the cranial portion of vagina, which mimicked the effect of developmental DES-exposure. Furthermore, neonatal DES exposure downregulated RUNX1 in the fornix of the vagina, where DES-associated adenosis is frequently found. This observation strongly suggests that the downregulation of RUNX1 is the cause of vaginal adenosis. However, once cell fate was determined, the BMP/Activin-SMAD/RUNX1 signaling pathway became dispensable for the maintenance of ΔNp63 expression in vaginal epithelium. Instead, the activity of the ΔNp63 locus in vaginal epithelium was maintained by a ΔNp63-dependent mechanism. This is the first demonstration of a molecular mechanism through which developmental chemical exposure causes precancerous lesions by altering cell fate.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Dietilestilbestrol/efeitos adversos , Epitélio/efeitos dos fármacos , Ductos Paramesonéfricos/efeitos dos fármacos , Proteínas Smad/metabolismo , Vagina/embriologia , Ativinas/metabolismo , Animais , Linhagem da Célula , Cruzamentos Genéticos , Estrogênios não Esteroides/efeitos adversos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/metabolismo , Ligação Proteica , Transativadores/metabolismo , Útero/embriologia , Vagina/efeitos dos fármacos , Doenças Vaginais/induzido quimicamente
13.
Mod Pathol ; 27(8): 1144-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24390224

RESUMO

Recent identification of somatic MED12 mutations in most uterine leiomyomas brings a new venue for the study of the tumorigenesis of leiomyomas. We are particularly interested in the correlation of MED12 and HMGA2 gene products in leiomyomas and leiomyosarcomas with and without MED12 mutations. To address these issues, in this study we examined MED12 mutations in a large cohort of usual type leiomyomas (178 cases) and uterine leiomyosarcomas (32 cases). We found that 74.7% (133/178) of leiomyomas had MED12 mutations, which was consistent with several independent studies. In contrast, only 9.7% (3/32) of leiomyosarcomas harbored MED12 mutations. Expression analysis by western blot and immunohistochemistry revealed that those leiomyomas with complex MED12 mutations had significantly lower protein products than the matched myometrium. Interestingly, most leiomyosarcomas without MED12 mutations also had very low levels of MED12 expression in comparison to the matched myometrium. These findings suggest a potential functional role of MED12 in both benign and malignant uterine smooth muscle tumors. When we further examined HMGA2 expression in all leiomyomas and leiomyosarcomas, we found that HMGA2 overexpression was exclusively present in those leiomyomas with no MED12 mutation, accounting for 10.1% (18/178) of total leiomyomas and 40% (18/45) of non-MED12 mutant leiomyomas. Twenty-five percent (8/32) of leiomyosarcomas had HMGA2 overexpression, and no MED12 mutations were found in HMGA2 positive leiomyosarcoma. These findings strongly suggest that MED12 mutations and HMGA2 overexpression are independent genetic events that occur in leiomyomas, and they may act differently in the tumorigenesis of uterine leiomyomas.


Assuntos
Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Proteína HMGA2/análise , Leiomioma/genética , Leiomiossarcoma/genética , Complexo Mediador/genética , Mutação , Neoplasias Uterinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Análise Mutacional de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Proteína HMGA2/genética , Humanos , Imuno-Histoquímica , Leiomioma/química , Leiomioma/patologia , Leiomiossarcoma/química , Leiomiossarcoma/patologia , Complexo Mediador/análise , Pessoa de Meia-Idade , Fenótipo , Translocação Genética , Regulação para Cima , Neoplasias Uterinas/química , Neoplasias Uterinas/patologia , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 107(40): 17298-303, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855612

RESUMO

Epithelial-specific activation of the PI3-kinase pathway is the most common genetic alteration in type I endometrial cancer. In the majority of these tumors, PTEN expression is lost in the epithelium but maintained in tumor stroma. Currently reported PTEN knockout mouse models initiate type I endometrial cancer concomitant with loss of PTEN in both uterine epithelium and stroma. Consequently, the biologic outcome of selectively activating the PI3-kinase pathway in the endometrial epithelium remains unknown. To address this question, we established a malleable in vivo endometrial regeneration system from dissociated murine uterine epithelium and stroma. Regenerated endometrial glands responded to pharmacologic variations in hormonal milieu similar to the native endometrium. Cell-autonomous activation of the PI3-kinase pathway via biallelic loss of PTEN or activation of AKT in adult uterine epithelia in this model was sufficient to initiate endometrial carcinoma. AKT-initiated tumors were serially transplantable, demonstrating permanent genetic changes in uterine epithelia. Immunohistochemistry confirmed loss of PTEN or activation of AKT in regenerated hyperplastic glands that were surrounded by wild-type stroma. We demonstrate that cell-autonomous activation of the PI3-kinase pathway is sufficient for the initiation of endometrial carcinoma in naive adult uterine epithelia. This in vivo model provides an ideal platform for testing the response of endometrial carcinoma to targeted therapy against this common genetic alteration.


Assuntos
Adenocarcinoma/enzimologia , Neoplasias do Endométrio/enzimologia , Endométrio/metabolismo , Endométrio/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Adenocarcinoma/patologia , Adulto , Animais , Neoplasias do Endométrio/patologia , Endométrio/anatomia & histologia , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/fisiologia
15.
Differentiation ; 84(3): 252-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22682699

RESUMO

Exposure to exogenous hormones during development can result in permanent health problems. In utero exposure to diethylstilbestrol (DES) is probably the most well documented case in human history. DES, an orally active synthetic estrogen, was believed to prevent adverse pregnancy outcome and thus was routinely given to selected pregnant women from the 1940s to the 1960s. It has been estimated that 5 million pregnant women worldwide were prescribed DES during this period. In the early 1970s, vaginal clear cell adenocarcinomas (CCACs) were diagnosed in daughters whose mother took DES during pregnancy (known as DES daughters). Follow-up studies demonstrated that exposure to DES in utero causes a spectrum of congenital anomalies in female reproductive tracts and CCACs. Among those, cervical and vaginal adenoses are most commonly found, which are believed to be the precursors of CCACs. Transformation related protein 63 (TRP63/p63) marks the cell fate decision of Müllerian duct epithelium (MDE) to become squamous epithelium in the cervix and vagina. DES disrupts the TRP63 expression in mice and induces adenosis lesions in the cervix and vagina. This review describes mouse models that can be used to study the development of DES-induced anomalies, focusing on cervical and vaginal adenoses, and discusses their molecular pathogenesis.


Assuntos
Adenocarcinoma de Células Claras/induzido quimicamente , Dietilestilbestrol/efeitos adversos , Estrogênios não Esteroides/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Neoplasias do Colo do Útero/induzido quimicamente , Neoplasias Vaginais/induzido quimicamente , Adenocarcinoma de Células Claras/genética , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosfoproteínas/genética , Gravidez , Transativadores/genética , Neoplasias do Colo do Útero/genética , Neoplasias Vaginais/genética
16.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855322

RESUMO

Development of the mammary gland requires both proper hormone signaling and cross talk between the stroma and epithelium. While estrogen receptor (ERα) expression in the epithelium is essential for normal gland development, the role of this receptor in the stroma is less clear. Moreover, several lines of evidence suggest that mouse phenotypes of in utero exposure to endocrine disruption act through mesenchymal ERα in the developing fetus. We utilized a Twist2-cre mouse line to knock out mesenchymal ERα. Herein, we assessed mammary gland development in the context of mesenchymal ERα deletion. We also tested the effect of in utero bisphenol A (BPA) exposure to alter the tumor susceptibility in the mouse mammary tumor virus-neu (MMTV-neu) breast cancer mouse model. Mesenchymal ERα deletion resulted in altered reproductive tract development and atypical cytology associated with estrous cycling. The mammary gland demonstrated mature epithelial extension unlike complete ERα-knockout mice, but ductal extension was delayed and reduced compared to ERα-competent mice. Using the MMTV-Neu cancer susceptibility model, ERα-intact mice exposed to BPA had reduced tumor-free survival and overall survival compared to BPA-exposed mice having mesenchymal ERα deletion. This difference is specific for BPA exposure as vehicle-treated animals had no difference in tumor development between mice expressing and not expressing mesenchymal ERα. These data demonstrate that mesenchymal ERα expression is not required for ductal extension, nor does it influence cancer risk in this mouse model but does influence the cancer incidence associated with in utero BPA exposure.


Assuntos
Neoplasias , Receptores de Estrogênio , Camundongos , Animais , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Camundongos Knockout , Epitélio/metabolismo , Neoplasias/metabolismo , Glândulas Mamárias Animais/patologia
17.
Differentiation ; 82(3): 117-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21612855

RESUMO

In mammals, the female reproductive tract (FRT) develops from a pair of paramesonephric or Müllerian ducts (MDs), which arise from coelomic epithelial cells of mesodermal origin. During development, the MDs undergo a dynamic morphogenetic transformation from simple tubes consisting of homogeneous epithelium and surrounding mesenchyme into several distinct organs namely the oviduct, uterus, cervix and vagina. Following the formation of anatomically distinctive organs, the uniform MD epithelium (MDE) differentiates into diverse epithelial cell types with unique morphology and functions in each organ. Classic tissue recombination studies, in which the epithelium and mesenchyme isolated from the newborn mouse FRT were recombined, have established that the organ specific epithelial cell fate of MDE is dictated by the underlying mesenchyme. The tissue recombination studies have also demonstrated that there is a narrow developmental window for the epithelial cell fate determination in MD-derived organs. Accordingly, the developmental plasticity of epithelial cells is mostly lost in mature FRT. If the signaling that controls epithelial differentiation is disrupted at the critical developmental stage, the cell fate of MD-derived epithelial tissues will be permanently altered and can result in epithelial lesions in adult life. A disruption of signaling that maintains epithelial cell fate can also cause epithelial lesions in the FRT. In this review, the pathogenesis of cervical/vaginal adenoses and uterine squamous metaplasia is discussed as examples of such incidences.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Ductos Paramesonéfricos/citologia , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Animais , Colo do Útero/anormalidades , Colo do Útero/citologia , Colo do Útero/embriologia , Dietilestilbestrol/efeitos adversos , Células Epiteliais/metabolismo , Estrogênios não Esteroides/efeitos adversos , Feminino , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Metaplasia , Ductos Paramesonéfricos/embriologia , Ductos Paramesonéfricos/metabolismo , Organogênese , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Útero/citologia , Útero/embriologia , Vagina/anormalidades , Vagina/citologia , Vagina/embriologia
18.
J Cachexia Sarcopenia Muscle ; 13(2): 1289-1301, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044098

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) is a complex syndrome of progressive muscle wasting and adipose loss with metabolic dysfunction, severely increasing the morbidity and mortality risk in cancer patients. However, there are limited studies focused on the underlying mechanisms of the progression of CAC due to the complexity of this syndrome and the lack of preclinical models that mimics its stagewise progression. METHODS: We characterized the initiation and progression of CAC in transgenic female mice with ovarian tumours. We measured proposed CAC biomarkers (activin A, GDF15, IL-6, IL-1ß, and TNF-α) in sera (n = 6) of this mouse model. The changes of activin A and GDF15 (n = 6) were correlated with the decline of bodyweight over time. Morphometry and signalling markers of muscle atrophy (n ≥ 6) and adipose tissue wasting (n ≥ 7) were assessed during CAC progression. RESULTS: Cancer-associated cachexia symptoms of the transgenic mice model used in this study mimic the progression of CAC seen in humans, including drastic body weight loss, skeletal muscle atrophy, and adipose tissue wasting. Serum levels of two cachexia biomarkers, activin A and GDF15, increased significantly during cachexia progression (76-folds and 10-folds, respectively). Overactivation of proteolytic activity was detected in skeletal muscle through up-regulating muscle-specific E3 ligases Atrogin-1 and Murf-1 (16-folds and 14-folds, respectively) with decreasing cross-sectional area of muscle fibres (P < 0.001). Muscle wasting mechanisms related with p-p38 MAPK, FOXO3, and p-AMPKα were highly activated in concurrence with an elevation in serum activin A. Dramatic fat loss was also observed in this mouse model with decreased fat mass (n ≥ 6) and white adipocytes sizes (n = 6) (P < 0.0001). The adipose tissue wasting was based on thermogenesis, supported by the up-regulation of uncoupling protein 1 (UCP1). Fibrosis in adipose tissue was also observed in concurrence with adipose tissue loss (n ≥ 13) (p < 0.0001). CONCLUSIONS: Our novel preclinical CAC mouse model mimics human CAC phenotypes and serum biomarkers. The mouse model in this study showed proteolysis in muscle atrophy, browning in adipose tissue wasting, elevation of serum activin A and GDF15, and atrophy of pancreas and liver. This mouse line would be the best preclinical model to aid in clarifying molecular mediators of CAC and dissecting metabolic dysfunction and tissue atrophy during the progression of CAC.


Assuntos
Caquexia , Neoplasias Ovarianas , Tecido Adiposo/patologia , Animais , Caquexia/patologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/patologia
19.
Differentiation ; 80(2-3): 99-105, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20638775

RESUMO

The developmental origin of vaginal epithelium has been controversial for nearly a century, with speculation that vaginal epithelium originates from the Müllerian duct, Wolffian duct, and/or urogenital sinus. None of these possibilities have been definitively proven or disproven by direct scientific data. To define precisely the origin of vaginal epithelium, epithelial cells of the Müllerian duct, Wolffian duct, or urogenital sinus were fluorescently labeled in mouse embryos by crossing tdTomato-EGFP dual-reporter transgenic mice with transgenic mouse lines that express Cre-recombinase in each type of epithelium. In embryos and newborn mice, the vagina consisted of fused Müllerian ducts plus the sinus vagina of urogenital sinus origin. However, the proportion of the sinus vagina was significantly reduced as the Müllerian vagina grew caudally. By postpartum day 7, the Müllerian vagina extended to the caudal end of the body, whereas the sinus vagina remained only at the junction between the vagina and perineal skin. As the vagina opened in puberty, urogenital sinus epithelium was detected only in the vulva, but not in the vagina. Additionally, from embryo to adult stages, residual Wolffian duct epithelium was present in the dorsolateral stromal wall of the vagina, but not within vaginal or vulvar epithelium. In conclusion, adult mouse vaginal epithelium is derived solely from Müllerian duct epithelium.


Assuntos
Vagina/embriologia , Animais , Epitélio/embriologia , Feminino , Imunofluorescência , Camundongos , Microscopia de Fluorescência , Ductos Paramesonéfricos/embriologia
20.
J Adv Prosthodont ; 12(6): 338-343, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489017

RESUMO

PURPOSE: The present study aimed to investigate the relationships between the crown form of the upper central incisor and their labial inclination, overbite, and overjet. MATERIALS AND METHODS: Maxillary and mandibular casts of 169 healthy dentitions were subjected to 3D dental scanning, and analyzed using CAD software. The crown forms were divided into tapered, square, and ovoid based on the mesiodistal dimensions at 20% of the crown height to that at 40%. The degree of labial inclination of the upper central incisor was defined as the angle between the occlusal plane and the line connecting the incisal edge and tooth cervix. The incisal edges of the right upper and lower central incisor that in contact with lines parallel to the occlusal plane were used to determine the overbite and overjet. One-way ANOVA was performed to compare the labial inclination, overbite, and overjet among the crown forms. RESULTS: The crown forms were classified into three types; crown forms with a 20%/40% dimension ratio of 1.00±0.01 were defined as square, >1.01 as tapered, and <0.99 as ovoid. The labial inclination degree was the greatest in tapered and the least in square. Both overbite and overjet in tapered and ovoid were higher than those in square. CONCLUSION: Upper central incisor crown forms were related to their labial inclination, overbite, and overjet. It was suggested that the labial inclination, overbite, and overjet should be taken into consideration for the prosthetic treatment or restoring the front teeth crowns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA