Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894460

RESUMO

The recently proposed magnetoimpedance tomography method is based on the analysis of the frequency dependences of the impedance measured at different external magnetic fields. The method allows one to analyze the distribution of magnetic properties over the cross-section of the ferromagnetic conductor. Here, we describe the example of theoretical study of the magnetoimpedance effect in an amorphous microwire with inhomogeneous magnetic structure. In the framework of the proposed model, it is assumed that the microwire cross-section consists of several regions with different features of the effective anisotropy. The distribution of the electromagnetic fields and the microwire impedance are found by an analytical solution of Maxwell equations in the particular regions. The field and frequency dependences of the microwire impedance are analyzed taking into account the frequency dependence of the permeability values in the considered regions. Although the calculations are given for the case of amorphous microwires, the obtained results can be useful for the development of the magnetoimpedance tomography method adaptation for different types of ferromagnetic conductors.

2.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36772460

RESUMO

Fe3Co67Cr3Si15B12 ribbons with a high degree of flexibility and excellent corrosion stability were produced by rapid quenching technique. Their structural, magnetic, and thermomagnetic (Anomalous Nernst Effect) properties were studied both in an as-quenched (NR) state and after stress annealing during 1 h at the temperature of 350 °C and a specific load of 230 MPa (AR). X-ray diffraction was used to verify the structural characteristics of our ribbons. Static magnetic properties were explored by inductive technique and vibrating sample magnetometry. The thermomagnetic curves investigated through the Anomalous Nernst Effect are consistent with the obtained magnetization results, presenting a linear response in the thermomagnetic signal, an interesting feature for sensor applications. Additionally, Anomalous Nernst Effect coefficient SANE values of 2.66µV/K and 1.93µV/K were estimated for the as-quenched and annealed ribbons, respectively. The interplay of the low magnetostrictive properties, soft magnetic behavior, linearity of the thermomagnetic response, and flexibility of these ribbons place them as promising systems to probe curved surfaces and propose multifunctional devices, including magnetic field-specialized sensors.

3.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37448014

RESUMO

The rectangular elements in magnetoimpedance (MI) configuration with a specific nanocomposite laminated structure based on FeNi and Cu layers were prepared by lift-off lithographic process. The properties of such elements are controlled by their shape, the anisotropy induced during the deposition, and by effects associated with the composite structure. The characterizations of static and dynamic properties, including MI measurements, show that these elements are promising for sensor applications. We have shown that competition between the shape anisotropy and the in-plane induced anisotropy of the element material is worth taking into account in order to understand the magnetic behavior of multilayered rectangular stripes. A possibility of the dynamic methods (ferromagnetic and spin-wave resonance) to describe laminated planar elements having a non-periodic modulation of both structure and magnetic parameters of a system is demonstrated. We show that the multilayered structure, which was originally designed to prevent the development of a "transcritical" state in magnetic layers and to reach the required thickness, also induces the effects that hinder the achievement of the goal, namely an increase in the perpendicular magnetic anisotropy energy.


Assuntos
Magnetismo , Imãs , Cobre/química , Anisotropia , Fenômenos Magnéticos
4.
Sensors (Basel) ; 23(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37765838

RESUMO

Thermoelectric phenomena, such as the Anomalous Nernst and Longitudinal Spin Seebeck Effects, are promising for sensor applications in the area of renewable energy. In the case of flexible electronic materials, the request is even larger because they can be integrated into devices having complex shape surfaces. Here, we reveal that Pt promotes an enhancement of the thermoelectric response in Co-rich ribbon/Pt heterostructures due to the spin-to-charge conversion. Moreover, we demonstrated that the employment of the thermopiles configuration in this system increases the induced thermoelectric current, a fact related to the considerable decrease in the electric resistance of the system. By comparing present findings with the literature, we were able to design a flexible thermopile based on LSSE without the lithography process. Additionally, the thermoelectric voltage found in the studied flexible heterostructures is comparable to the ones verified for rigid systems.

5.
Sensors (Basel) ; 22(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366056

RESUMO

FeNi films of different thickness and FeNi/(Fe, Co)/FeNi trilayers were prepared by magnetron sputtering deposition onto glass substrates. The permalloy films had a columnar microstructure. The detailed analysis of the magnetic properties based on the magnetic and magneto-optical measurements showed that at thicknesses exceeding a certain critical thickness, hysteresis loops acquire a specific shape and the coercive force of the films increase sharply. The possibility of the estimation of the perpendicular magnetic anisotropy constant using the Murayama equation for the thickness dependence of saturation field was demonstrated. The results of studies of the structural and magnetic properties of FeNi films laminated by Fe and Co spacers with different thickness are presented.

6.
Sensors (Basel) ; 21(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34372387

RESUMO

Magnetoimpedance (MI) biosensors for the detection of in-tissue incorporated magnetic nanoparticles are a subject of special interest. The possibility of the detection of the ferrogel samples mimicking the natural tissues with nanoparticles was proven previously for symmetric MI thin-film multilayers. In this work, in order to describe the MI effect in non-symmetric multilayered elements covered by ferrogel layer we propose an electromagnetic model based on a solution of the 4Maxwell equations. The approach is based on the previous calculations of the distribution of electromagnetic fields in the non-symmetric multilayers further developed for the case of the ferrogel covering. The role of the asymmetry of the film on the MI response of the multilayer-ferrogel structure is analyzed in the details. The MI field and frequency dependences, the concentration dependences of the MI for fixed frequencies and the frequency dependence of the concentration sensitivities are obtained for the detection process by both symmetric and non-symmetric MI structures.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Magnetismo
7.
Sensors (Basel) ; 21(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067478

RESUMO

Multilayered [FeNi (100 nm)/Cu (3 nm)]5/Cu (500 nm)/[Cu (3 nm)/[FeNi (100 nm)]5 structures were used as sensitive elements of the magnetoimpedance (MI) sensor prototype for model experiments of the detection of magnetic particles in blood vessel. Non-ferromagnetic cylindrical polymer rod with a small magnetic inclusion was used as a sample mimicking thrombus in a blood vessel. The polymer rod was made of epoxy resin with an inclusion of an epoxy composite containing 30% weight fraction of commercial magnetite microparticles. The position of the magnetic inclusion mimicking thrombus in the blood vessel was detected by the measurements of the stray magnetic fields of microparticles using MI element. Changes of the MI ratio in the presence of composite can be characterized by the shift and the decrease of the maximum value of the MI. We were able to detect the position of the magnetic composite sample mimicking thrombus in blood vessels. Comsol modeling was successfully used for the analysis of the obtained experimental results and the understanding of the origin the MI sensitivity in proposed configuration. We describe possible applications of studied configuration of MI detection for biomedical applications in the field of thrombus state evaluation and therapy.


Assuntos
Técnicas Biossensoriais , Óxido Ferroso-Férrico , Campos Magnéticos , Magnetismo
8.
Sensors (Basel) ; 21(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34960405

RESUMO

Magnetic metallic nanoparticles (MNPs) of Ni, Ni82Fe18, Ni50Fe50, Ni64Fe36, and Fe were prepared by the technique of the electrical explosion of metal wire. The average size of the MNPs of all types was in the interval of 50 to 100 nm. Magnetic polymeric composites based on polyvinyl butyral with embedded metal MNPs were synthesized and their structural, adhesive, and magnetic properties were comparatively analyzed. The interaction of polyvinyl butyral (supplied as commercial GE cryogenic varnish) with metal MNPs was studied by microcalorimetry. The enthalpy of adhesion was also evaluated. The positive values of the enthalpy of interaction with GE increase in the series Ni82Fe18, Ni64Fe36, Ni50Fe50, and Fe. Interaction of Ni MNPs with GE polymer showed the negative change in the enthalpy. No interfacial adhesion of GE polymer to the surface of Fe and permalloy MNPs in composites was observed. The enthalpy of interaction with GE polymer was close to zero for Ni95Fe5 composite. Structural characterization of the GE/Ni composites with the MNPs with the lowest saturation magnetization confirmed that they tended to be aggregated even for the materials with lowest MNPs concentrations due to magnetic interaction between permalloy MNPs. In the case of GE composites with Ni MNPs, a favorable adhesion of GE polymer to the surface of MNPs was observed.

9.
Sensors (Basel) ; 19(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013792

RESUMO

Intensive studies of the magnetoimpedance (MI) effect in nanostructured multilayers provide a good phenomenological basis and theoretical description for the symmetric case when top and bottom layers of ferromagnet/conductor/ferromagnet structure have the same thickness and consist of one magnetic layer each. At the same time, there is no model to describe the MI response in multilayered films. Here, we propose the corresponding model and analyze the influence of the multilayer parameters on the field and frequency dependences of the MI. The approach is based on the calculation of the field distribution within the multilayer by means of a solution of lineralizied Maxwell equations together with the Landau-Lifshitz equation for the magnetization motion. The theoretical model developed allows one to explain qualitatively the main features of the MI effect in multilayers and could be useful for optimization of the film parameters. It might also be useful as a model case for the development of MI magnetic biosensors for magnetic biomarker detection.

10.
Sensors (Basel) ; 19(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540284

RESUMO

Ferrogels (FG) are magnetic composites that are widely used in the area of biomedical engineering and biosensing. In this work, ferrogels with different concentrations of magnetic nanoparticles (MNPs) were synthesized by the radical polymerization of acrylamide in stabilized aqueous ferrofluid. FG samples were prepared in various shapes that are suitable for different characterization techniques. Thin cylindrical samples were used to simulate the case of targeted drug delivery test through blood vessels. Samples of larger size that were in the shape of cylindrical plates were used for the evaluation of the FG applicability as substitutes for damaged structures, such as bone or cartilage tissues. Regardless of the shape of the samples and the conditions of their location, the boundaries of FG were confidently visualized over the entire range of concentrations of MNPs while using medical ultrasound. The amplitude of the reflected echo signal was higher for the higher concentration of MNPs in the gel. This result was not related to the influence of the MNPs on the intensity of the reflected echo signal directly, since the wavelength of the ultrasonic effect used is much larger than the particle size. Qualitative theoretical model for the understanding of the experimental results was proposed while taking into account the concept that at the acoustic oscillations of the hydrogel, the macromolecular net, and water in the gel porous structure experience the viscous Stocks-like interaction.


Assuntos
Tecnologia Biomédica/métodos , Géis/química , Ultrassonografia , Elasticidade , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Estresse Mecânico
11.
Sensors (Basel) ; 19(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146498

RESUMO

Amorphous and nanocrystalline soft magnetic materials have attracted much attention in the area of sensor applications. In this work, the magnetoimpedance (MI) effect of patterned soft ferromagnetic meander-shaped sensor elements has been investigated. They were fabricated starting from the cobalt-based amorphous ribbon using the lithography technique and chemical etching. Three-turn (S1: spacing s = 50 µm, width w = 300 µm, length l = 5 mm; S2: spacing s = 50 µm, width w = 400 µm, length l = 5 mm) and six-turn (S3: s = 40 µm, w = 250 µm, length l = 5 mm; S4: s = 40 µm, w = 250 µm and l = 8 mm) meanders were designed. The 'n' shaped meander part was denominated as "one turn". The S4 meander possesses a maximum MI ratio calculated for the total impedance ΔZ/Z ≈ 250% with a sensitivity of about 36%/Oe (for the frequency of about 45 MHz), and an MI ratio calculated for the real part of the total impedance ΔR/R ≈ 250% with the sensitivity of about 32%/Oe (for the frequency of 50 MHz). Chemical etching and the length of the samples had a strong impact on the surface magnetic properties and the magnetoimpedance. A comparative analysis of the surface magnetic properties obtained by the magneto-optical Kerr technique and MI data shows that the designed ferromagnetic meander-shaped sensor elements can be recommended for high frequency sensor applications focused on the large drop analysis. Here we understand a single large drop as the water-based sample to analyze, placed onto the surface of the MI sensor element either by microsyringe (volue range 0.5-500 µL) or automatic dispenser (volume range 0.1-50 mL).

12.
Sensors (Basel) ; 18(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543746

RESUMO

Hydrogels are biomimetic materials widely used in the area of biomedical engineering and biosensing. Ferrogels (FG) are magnetic composites capable of functioning as magnetic field sensitive transformers and field assisted drug deliverers. FG can be prepared by incorporating magnetic nanoparticles (MNPs) into chemically crosslinked hydrogels. The properties of biomimetic ferrogels for multifunctional biosensor applications can be set up by synthesis. The properties of these biomimetic ferrogels can be thoroughly controlled in a physical experiment environment which is much less demanding than biotests. Two series of ferrogels (soft and dense) based on polyacrylamide (PAAm) with different chemical network densities were synthesized by free-radical polymerization in aqueous solution with N,N'-methylene-diacrylamide as a cross-linker and maghemite Fe2O3 MNPs fabricated by laser target evaporation as a filler. Their mechanical, electrical and magnetic properties were comparatively analyzed. We developed a giant magnetoimpedance (MI) sensor prototype with multilayered FeNi-based sensitive elements deposited onto glass or polymer substrates adapted for FG studies. The MI measurements in the initial state and in the presence of FG with different concentrations of MNPs at a frequency range of 1-300 MHz allowed a precise characterization of the stray fields of the MNPs present in the FG. We proposed an electrodynamic model to describe the MI in multilayered film with a FG layer based on the solution of linearized Maxwell equations for the electromagnetic fields coupled with the Landau-Lifshitz equation for the magnetization dynamics.

13.
Sensors (Basel) ; 18(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337918

RESUMO

Magnetic biosensors are an important part of biomedical applications of magnetic materials. As the living tissue is basically a "soft matter." this study addresses the development of ferrogels (FG) with micron sized magnetic particles of magnetite and strontium hexaferrite mimicking the living tissue. The basic composition of the FG comprised the polymeric network of polyacrylamide, synthesized by free radical polymerization of monomeric acrylamide (AAm) in water solution at three levels of concentration (1.1 M, 0.85 M and 0.58 M) to provide the FG with varying elasticity. To improve FG biocompatibility and to prevent the precipitation of the particles, polysaccharide thickeners-guar gum or xanthan gum were used. The content of magnetic particles in FG varied up to 5.2 wt % depending on the FG composition. The mechanical properties of FG and their deformation in a uniform magnetic field were comparatively analyzed. FG filled with strontium hexaferrite particles have larger Young's modulus value than FG filled with magnetite particles, most likely due to the specific features of the adhesion of the network's polymeric subchains on the surface of the particles. FG networks with xanthan are stronger and have higher modulus than the FG with guar. FG based on magnetite, contract in a magnetic field 0.42 T, whereas some FG based on strontium hexaferrite swell. Weak FG with the lowest concentration of AAm shows a much stronger response to a field, as the concentration of AAm governs the Young's modulus of ferrogel. A small magnetic field magnetoimpedance sensor prototype with Co68.6Fe3.9Mo3.0Si12.0B12.5 rapidly quenched amorphous ribbon based element was designed aiming to develop a sensor working with a disposable stripe sensitive element. The proposed protocol allowed measurements of the concentration dependence of magnetic particles in gels using magnetoimpedance responses in the presence of magnetite and strontium hexaferrite ferrogels with xanthan. We have discussed the importance of magnetic history for the detection process and demonstrated the importance of remnant magnetization in the case of the gels with large magnetic particles.


Assuntos
Biomimética , Resinas Acrílicas , Técnicas Biossensoriais , Módulo de Elasticidade , Óxido Ferroso-Férrico , Géis , Hidrogéis , Magnetismo , Nanopartículas de Magnetita , Tamanho da Partícula , Estrôncio
14.
Soft Matter ; 13(18): 3359-3372, 2017 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-28426089

RESUMO

A new kind of ferrogel with entrapped metallic iron nanoparticles causing unusual magnetodeformation is presented. Crosslinked polyacrylamide (PAAm) based ferrogels embedded with iron nanoparticles (MNPs) were synthesized by free radical polymerization in aqueous medium. Spherical iron MNPs with average diameter 66 nm were synthesized by the electrical explosion of wire and modified by interfacial adsorption of linear polyacrylamide (LPAAm). Extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) calculations based on the superposing of van der Waals, electrostatic, steric, and magnetic contributions showed that polymeric encapsulation of nanoparticles by LPAAm is one of the most suitable pathways for preparing stable aqueous dispersions of iron nanoparticles. Microcalorimetry confirmed the presence of strong interfacial adhesion forces between LPAAm chains and the surface of iron nanoparticles. By keeping the same crosslinking density of a polymer network (i.e. 100 : 1, monomer to crosslinker ratio) and varying the initial monomer concentration, an influence of the extent of polymer network reticulation on the mechanical properties and subsequently, magneto-elastic properties was demonstrated. It was found that the upper limit of the shear modulus for the synthesis of a new kind of polyacrylamide based ferrogel to exhibit any usable magnetodeformation under the application of a uniform external magnetic field of 420 mT is ca. 1 kPa. Magnetodeformation of cylindrical ferrogel samples was observed in the form of an overall volume contraction accompanied by a homogeneous decrease in all dimensions. The deformation was found to be maximum (around 10%) for the aspect ratio of 1/1 and it was lower and similar for the samples with 1/2 and 2/1 aspect ratios. Such a type of magnetic response is significantly different from the behavior observed in the existing reports on ferroelastomers.

15.
Sensors (Basel) ; 17(8)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28817084

RESUMO

Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, including magnetic biosensors. A (Cu/FeNi)5/Cu/(Cu/FeNi)5 multilayered structure with well-defined traverse magnetic anisotropy showed an increase in the GMI ratio for the total impedance and its real part with temperature increased. The maximum of the GMI of the total impedance ratio ΔZ/Z = 56% was observed at a frequency of 80 MHz, with a sensitivity of 18%/Oe, and the maximum GMI of the real part ΔR/R = 170% at a frequency of 10 MHz, with a sensitivity of 46%/Oe. As the magnetization and direct current electrical resistance vary very little with the temperature, the most probable mechanism of the unexpected increase of the GMI sensitivity is the stress relaxation mechanism associated with magnetoelastic anisotropy.


Assuntos
Magnetismo , Anisotropia , Técnicas Biossensoriais , Impedância Elétrica , Temperatura
16.
Sensors (Basel) ; 17(11)2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137198

RESUMO

Present day biomedical applications, including magnetic biosensing, demand better understanding of the interactions between living systems and magnetic nanoparticles (MNPs). In this work spherical MNPs of maghemite were obtained by a highly productive laser target evaporation technique. XRD analysis confirmed the inverse spinel structure of the MNPs (space group Fd-3m). The ensemble obeyed a lognormal size distribution with the median value 26.8 nm and dispersion 0.362. Stabilized water-based suspensions were fabricated using electrostatic or steric stabilization by the natural polymer chitosan. The encapsulation of the MNPs by chitosan makes them resistant to the unfavorable factors for colloidal stability typically present in physiological conditions such as pH and high ionic force. Controlled amounts of suspensions were used for in vitro experiments with human blood mononuclear leukocytes (HBMLs) in order to study their morphofunctional response. For sake of comparison the results obtained in the present study were analyzed together with our previous results of the study of similar suspensions with human mesenchymal stem cells. Suspensions with and without chitosan enhanced the secretion of cytokines by a 24-h culture of HBMLs compared to a control without MNPs. At a dose of 2.3, the MTD of chitosan promotes the stimulating effect of MNPs on cells. In the dose range of MNPs 10-1000 MTD, chitosan "inhibits" cellular secretory activity compared to MNPs without chitosan. Both suspensions did not caused cell death by necrosis, hence, the secretion of cytokines is due to the enhancement of the functional activity of HBMLs. Increased accumulation of MNP with chitosan in the cell fraction at 100 MTD for 24 h exposure, may be due to fixation of chitosan on the outer membrane of HBMLs. The discussed results can be used for an addressed design of cell delivery/removal incorporating multiple activities because of cell capability to avoid phagocytosis by immune cells. They are also promising for the field of biosensor development for the detection of magnetic labels.


Assuntos
Nanopartículas de Magnetita , Quitosana , Compostos Férricos , Humanos , Teste de Materiais , Eletricidade Estática , Suspensões , Água
17.
Sensors (Basel) ; 14(5): 7602-24, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24776934

RESUMO

The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT.

18.
Molecules ; 19(6): 8387-401, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24950442

RESUMO

Fe3O4 and ZnxFe3-xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz) expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications.


Assuntos
Nanopartículas de Magnetita , Micro-Ondas , Anisotropia , Óxido Ferroso-Férrico
20.
Micromachines (Basel) ; 13(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893163

RESUMO

The development of magnetoactive microsystems for targeted drug delivery, magnetic biodetection, and replacement therapy is an important task of present day biomedical research. In this work, we experimentally studied the mechanical force acting in cylindrical ferrogel samples due to the application of a non-uniform magnetic field. A commercial microsystem is not available for this type of experimental study. Therefore, the original experimental setup for measuring the mechanical force on ferrogel in a non-uniform magnetic field was designed, calibrated, and tested. An external magnetic field was provided by an electromagnet. The maximum intensity at the surface of the electromagnet was 39.8 kA/m and it linearly decreased within 10 mm distance from the magnet. The Ferrogel samples were based on a double networking polymeric structure which included a chemical network of polyacrylamide and a physical network of natural polysaccharide guar. Magnetite particles, 0.25 micron in diameter, were embedded in the hydrogel structure, up to 24% by weight. The forces of attraction between an electromagnet and cylindrical ferrogel samples, 9 mm in height and 13 mm in diameter, increased with field intensity and the concentration of magnetic particles, and varied within 0.1-30 mN. The model provided a fair evaluation of the mechanical forces that emerged in ferrogel samples placed in a non-uniform magnetic field and proved to be useful for predicting the deformation of ferrogels in practical bioengineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA